Lockheed Environmental Systems & Technologies Co. Lockheed Analytical Services 975 Kelly Johnson Drive Las Vegas, Nevada 89119-3705 Telephone 702-361-0220 800-582-7605 Facsimile 702-361-8146

June 29, 1995

Ms. Joan Kessner Bechtel Hanford, Inc. 345 Hills P.O. Box 969 Richland, WA 99352

RE: Log-in No.:

Quotation No.:

SAF:

Document File No.:

BHI Document File No.: SDG No.:

L4482

Q400000-B

B95-049

0511596

221

LK4482

The attached data report contains the analytical results of samples that were submitted to Lockheed Analytical Services on 11 May 1995.

The temperature of the cooler upon receipt was 2°C. Sample containers received agree with the chain-of-custody documentation. Sample containers were received intact. Samples were received in time to meet the analytical holding time requirements.

The case narratives included in the following attachments provide a detailed description of all events that occurred during sample preparation, analysis, and data review specific to the samples and analytical methods requested.

A list of data qualifiers, chain-of-custody forms, sample receiving checklist, and log-in report are also enclosed representing the samples received within this group.

If you have any questions concerning the analysis or the data please call Kathleen Hall at (509) 943-4423.

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page1

Release of this data report has been authorized by the Laboratory Director or the Director's designee as evidenced by the following signature.

" I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manger or a designee, as verified by the following signature."

Sincerely,

Kathleen M. Hall

Client Services Representative

cc: Client Services

Document Control

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page2

CASE NARRATIVE INORGANIC NON METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

 One water sample was received for LK4482 and prepared as batch 511bh and analyzed for selected analytes as requested on the chain of custody. Quality control analysis was performed on the following sample:

Client ID	LAL#		Method
вогкн6	L4482-5 L4482-3	DUP MS, DUP	160.1 TDS 300.0 Orthophosphate, Fluoride, Chloride, Nitrate-N, Nitrite-N, Sulfate
	L4482-4 L4482-6	DUP MS, DUP	310.1 Alkalinity CLP Cyanide

Holding Time Requirements

All samples were analyzed within the specified holding time.

Method Blanks

 The concentration levels of all the requested analytes in the method blank were below the reporting detection limits.

Internal Quality Control

All Internal Quality Control were within acceptance limits.

Kay McCann	May 18, 1995
Prepared By	Date

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page3

CASE NARRATIVE INORGANIC METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

The samples were received in on May 11, 1995. They were logged in as L4482 and prepared and analyzed in batches 511 bhT for total metals and 511 bhD for filtered water.

Holding Times-

All samples were analyzed within the method-specific holding times.

Method Blanks-

The method blanks were free of contamination.

Internal Quality Control-

All Internal Quality Control were within acceptance limits with the following exception: The matrix spike recovery for bismuth in the filtered water analysis was outside of acceptance limits (27%). The recovery based on the LCS (99%) support that the analytical system was operating within control limits.

Sample Results-

Bismuth was determined by ICP-MS, as approved by Clay Smith of Bechtel Hanford.

Shellee McGrath
Prepared By

June 29, 1995 Date

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page4

CASE NARRATIVE RADIOCHEMICAL ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument calibration, initial and continuing calibration verification, quench monitoring standards, instrument background analysis, method blanks, yield tracer, laboratory control samples, matrix spike samples, duplicate samples.

Holding Time Requirements

All holding time requirements were met.

Chemical recoveries and MDAs, where applicable, can be found on the preparation and calculation worksheets of the attached raw data for each method.

Analytical Method

Gamma Spectrum Analysis

The gamma spectrum analysis was performed using LAL-91-SOP-0063. All samples _ were analyzed on batch #23211, which contains a method blank (MB), two duplicates (DUP1, DUP2), and a laboratory control sample (LCS). The DUP2 for Cs-137 was out of limits; however, since the Cs-137 DUP1 and both Pb-214 duplicates were within limits, the data is considered acceptable. All other QC criteria were met.

Gross Alpha Beta

The gross alpha beta analysis was performed using LAL-91-SOP-0060. All samples were analyzed on batch #23215, which contains an MB, DUP and LCS. No problems were encountered during preparation or analysis, and all QC criteria were met.

Plutonium Isotopic

The plutonium isotopic analysis was performed using LAL-91-SOP-0108. All samples were analyzed on batch #23154, which contains an MB, DUP and LCS. The duplicate (sample #23154DUP1) has a poor chemical recovery and only three counts. The duplicate uncertainty shows that the detected value is not significantly different from zero. No matrix spike analysis (MS) was performed due to insufficient sample. All other QC criteria were met.

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page5

Strontium-90

The strontium-90 analysis was performed using LAL-91-SOP-0196. All samples were analyzed on batch #23179, which contains an MB, DUP and LCS. During preparation, the samples were wetashed under the heat lamp with concentrated HNO3 to get rid of the excess organic materials. This was done in the original conical planchets. After they were dried, they were reweighed. There was insufficient sample for an MS analysis. All other QC criteria were met.

Technetium-99

The technetium-99 analysis was performed using LAL-91-SOP-0169. All samples were analyzed on batch #23139, which contains an MB, DUP1, DUP2, and LCS. The second duplicate (DUP2) was out of limits; however, since DUP1 was within limits, the data is considered acceptable. No matrix spike analysis was performed due to insufficient sample. All other QC criteria were met.

Total Uranium

The total uranium analysis was performed using LAL-91-SOP-0168. All samples were analyzed on batch #23131, which contains an MB, DUP, LCS and MS. No problems were encountered during preparation or analysis, and all QC criteria were met.

Tritium

The tritium analysis was performed using LAL-91-SOP-0066. All samples were analyzed on batch #23181, which contains an MB, DUP, LCS and MS. No problems were encountered during preparation or analysis, and all QC criteria were met.

Lockheed Analytical Services DATA QUALIFIERS FOR INORGANIC ANALYSES

[Revised 08/28/92]

	For Use on the Analytical Data Reporting Forms
В	For CLP Analyses Only — Reported value is less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL).
С	For Routine, Non-CLP Analyses Only — Any constituent that was also detected in the associated blank whose concentration was greater than the reporting detection limit (RDL).
. D	Presence of high levels of interfering constituents required dilution of sample which increased the RDL by the dilution factor.
E	Estimated value due to presence of interference.
Н	Sample analysis performed outside of method-or client-specified maximum holding time requirement.
M	For CLP Analyses Only - Duplicate injection precision criterion was not met.
N	Matrix spike recovery exceeded acceptance limits.
S	Reported value was determined from the method of standard addition.
Ū	For CLP Reporting Only — Constituent was analyzed for but not detected (sample quantitation must be corrected for dilution and percent moisture).
W	For AAS Only - Post-digestion spike for Furnace AAS did not meet acceptance criteria and sample absorbance is less than 50% of spike absorbance.
X, Y, or Z	Analyst-defined qualifier.
*	Relative percent difference (RPD) for duplicate analysis exceeded acceptance limits.
+	Correlation coefficient (r) for the MSA is less than 0.995.
	For Use on the QC Data Reporting Forms
a¹	The spike recovery and/or RPD for matrix spike and matrix spike duplicates cannot be evaluated due to insufficient spiking level compared to the elevated sample analyte concentration.
b ¹ .	The RPD cannot be computed because the sample and/or duplicate concentration was below the RDL.

¹ Used as footnote designations on the QC summary form.

Lockheed Analytical Services DATA QUALIFIERS FOR RADIOCHEMICAL ANALYSES

[Revised 08/28/92]

	For Use on the Analytical Data Reporting Forms						
В	Any constituent that was also detected in the associated blank whose concentration was greater than the reporting detection limit (RDL) and/or minimum detectable activity (MDA).						
С	Presence of high TDS in sample required reduction of sample size which increased the MDA.						
D	Constituent detected in the diluted sample.						
E	Constituent concentration exceeded the calibration or attenuation curve range.						
F	For Alpha Spectrometry Only FWHM exceeded acceptance limits.						
н	Sample analysis performed outside of method-specified maximum holding time requirement.						
Y	Chemical yield exceeded acceptance limits.						
e de la companya de l	For Use on the QC Data Reporting Forms						
*	QC data (i.e., percent recovery data for laboratory control standard and matrix spike; and RPD for replicate analyses) exceeded acceptance limits.						
a¹	The spike recovery and/or RPD for matrix spike and duplicates cannot be evaluated due to insufficient spiking level compared to the elevated sample analyte concentration.						
\mathbf{b}^{1}	The RPD cannot be computed because the sample and/or duplicate concentration was below the MDA.						

¹ Used as foot note designations on the QC summary form.

LOCKHEED ANALYTICAL SERVICES LOGIN CHAIN OF CUSTODY REPORT (ln01) Jun 16 1995, 10:59 am

Login Number: L4482

Account: 596 Bechtel Hanford, Inc. * Richland, WA Project: BECHTEL-HANFORD Bechtel Hanford Project

Laboratory Client Sample Number Sample Number	Collect Receive Due Date Date PR Date
L4482-1 B0FKH6 TEMP 2	09-MAY-95 11-MAY-95 15-JUN-95
Location: EXPENDED Water 1 S SCREENING	Hold:05-NOV-95
L4482-2 BOFKH6 TEMP 2 "ICP METALS=Ca, Mg, Na, K, Fe, M Location: RFG01-7C	09-MAY-95 11-MAY-95 15-JUN-95 n,Si,Al,Bi,Se"
Water 1 S CLP FURNACE Water 1 S CLP ICP Water 1 S CLP ICP-MS METALS	Hold:05-NOV-95 Hold:05-NOV-95 Hold:05-NOV-95
L4482-3 B0FKH6 TEMP 2	09-MAY-95 11-MAY-95 15-JUN-95
Location: RFG19-103C Water 1 S 300.0 CHLORIDE Water 1 S 300.0 FLUORIDE Water 1 S 300.0 NITRATE Water 1 S 300.0 NITRITE Water 1 S 300.0 PHOSPHATE Water 1 S 300.0 SULFATE	Hold:06-JUN-95 Hold:06-JUN-95 Hold:11-MAY-95 Hold:11-MAY-95 Hold:11-MAY-95 Hold:06-JUN-95
L4482-4 B0FKH6 TEMP 2 Location: RFG19-103C Water 1 S 310.1 ALKALINITY	09-MAY-95 11-MAY-95 15-JUN-95 Hold:23-MAY-95
L4482-5 BOFKH6 TEMP 2	09-MAY-95 11-MAY-95 15-JUN-95
Location: RFG19-127C Water 1 S 160.1 TDS	Hold:16-MAY-95
L4482-6 BOFKH6 TEMP 2 "ICP METALS=Ca, Mg, Na, K, Fe, Mg Location: RFG19-127C	09-MAY-95 11-MAY-95 15-JUN-95 n,Si,Al,Bi,Se"
Water 1 S CLP CYANIDE	Hold:23-MAY-95
L4482-7 B0FKH6 TEMP 2 Location: RFG01-7C	09-MAY-95 11-MAY-95 15-JUN-95
L4482-8 BOFKH6 TEMP 2 "GAMMA SPEC TO INCLUDE Cs13" Location: 155	09-MAY-95 11-MAY-95 15-JUN-95 7, Co-60, Ru-106"

Page 1

*ADDED CCP ICP-MS METALS (Bi) TO

L4482-2, -21

R.C. 6-16-95

11591

LOCKHEED ANALYTICAL SERVICES LOGIN CHAIN OF CUSTODY REPORT (ln01) Jun 16 1995, 10:59 am

Login Number: L4482 Account: 596 Bechtel Hanford, Inc. * Richland, WA Project: BECHTEL-HANFORD Bechtel Hanford Project Account: 596

Water 1 S GAMMA SPEC LAL-0063 Hold:05-NOV-95 Water 1 S GR ALP/BETA LAL-0060 Hold:05-NOV-95 Water 1 S PU-ISOTOPIC LAL-0108 Hold:05-NOV-95 Water 1 S SR-90 LAL-0196 Hold:05-NOV-95 Water 1 S U TOTAL KPA LAL-0168 Hold:05-NOV-95	
L4482-9 BOFKH6 09-MAY-95 11-MAY-95 15-JUN- TEMP 2 "GAMMA SPEC TO INCLUDE Cs137, Co-60, Ru-106" Location: 156H-A100	-95
L4482-10 B0FKH6 09-MAY-95 11-MAY-95 15-JUN- TEMP 2 "GAMMA SPEC TO INCLUDE Cs137, Co-60, Ru-106" Location: 156V-045	- 95
L4482-11 BOFKH6 09-MAY-95 11-MAY-95 15-JUN- TEMP 2 "GAMMA SPEC TO INCLUDE Cs137, Co-60, Ru-106" Location: EXPENDED	
L4482-12 "GAMMA SPEC TO INCLUDE Cs137, Co-60, Ru-106" Location: 156V-045	
L4482-13 B0FKH6 09-MAY-95 11-MAY-95 15-JUN- TEMP 2 "GAMMA SPEC TO INCLUDE Cs137, Co-60, Ru-106" Location: 156H-A100	-95
L4482-14 BOFKH6 09-MAY-95 11-MAY-95 15-JUN- TEMP 2 "GAMMA SPEC TO INCLUDE Cs137, Co-60, Ru-106" Location: 156V-E032	- 95
L4482-15 BOFKH6 09-MAY-95 11-MAY-95 15-JUN- TEMP 2 "GAMMA SPEC TO INCLUDE Cs137, Co-60, Ru-106" Location: 156V-A035	
L4482-16 BOFKH6 09-MAY-95 11-MAY-95 15-JUN- TEMP 2 Location: 156-020 Water 1 S TRITIUM(H3) LAL-0066 Hold:05-NOV-95	- 95
L4482-17 TEMP 2 Location: 156CART-4 Water 1 S TC-99 LAL-0169 Hold:05-NOV-95	- 95

LOCKHEED ANALYTICAL SERVICES. LOGIN CHAIN OF CUSTODY REPORT (ln01) Jun 16 1995, 10:59 am

Login Number: L4482 Account: 596 Bechtel Hanford, Inc. * Richland, WA Project: BECHTEL-HANFORD Bechtel Hanford Project Account: 596

Laboratory Sample Number	Client Sample Number	Collect Date	Receive Date PR	Due Date
L4482-18 TEMP 2 Location: 156H-A	•	09-MAY-95	11-MAY-95	15-JUN-95
L4482-19 TEMP 2 Location: 156H-A		09-MAY-95	11-MAY-95	15-JUN-95
L4482-20 TEMP 2 Location: 156H-A		09-MAY-95	11-MAY-95	15-JUN-95
Location: 133 Filt H20 15 S Filt H20 15 S	BOFKH7 TALS=Ca,Mg,Na,K,Fe,M CLP FURNACE CLP ICP CLP ICP-MS METALS	09-MAY-95 n,Si,Al,Bi,Se" Hold:05-NOV-95 Hold:05-NOV-95 Hold:05-NOV-95	11-MAY-95	15-JUN-95
Location: Water 1 S Water 1 S	REPORT TYPE EDD - DISK DEL. INORG TYPE 2 RPT + RAD RPT TYPE 2	11-MAY-95	11-MAY-95	15-JUN-95

rage	3	
	Signature:	
	Date:	014

LOGIN CHAIN OF CUSTODY REPORT (ln01) May 11 1995, 10:31 am

Login Number: L4482
Account: 596 Bechtel Hanford, Inc. * Richland, WA
Project: BECHTEL-HANFORD Bechtel Hanford Project

Laboratory Sample Number	Client Sample Number		ceive Due te PR Date
L4482-1 TEMP 2 Location: 157	воғкн6	09-MAY-95 11	-MAY-95 15-JUN-95
Location: 157 Water 1	S SCREENING	Hold:05-NOV-95	
L4482-2 TEMP 2 "ICP Location: 157	BOFKH6 METALS=Ca,Mg,Na,K,Fe,M	09-MAY-95 11 n,Si,Al,Bi,Se"	-MAY-95 15-JUN-95
Water 1 Water 1	S CLP FURNACE S CLP ICP	Hold:05-NOV-95 Hold:05-NOV-95	
L4482-3 TEMP 2 Location: 157	ВОГКН6	09-MAY-95 11	-MAY-95 15-JUN-95
Water 1	S 300.0 CHLORIDE S 300.0 FLUORIDE S 300.0 NITRATE S 300.0 NITRITE S 300.0 PHOSPHATE S 300.0 SULFATE	Hold:06-JUN-95 Hold:06-JUN-95 Hold:11-MAY-95 Hold:11-MAY-95 Hold:11-MAY-95 Hold:06-JUN-95	
L4482-4 TEMP 2 Location: 157 Water 1	BOFKH6 S 310.1 ALKALINITY	09-MAY-95 11 Hold:23-MAY-95	-MAY-95 15-JUN-95
L4482-5 TEMP 2 Location: 157	воғкн6	09-MAY-95 11	-MAY-95 15-JUN-95
Water 1 L4482-6	S 160.1 TDS BOFKH6	Hold:16-MAY-95	-MAY-95 15-JUN-95
TEMP 2 "ICP Location: 157 Water 1	METALS=Ca, Mg, Na, K, Fe, Mi S CLP CYANIDE	n,S1,A1,B1,Se" Hold:23-MAY-95	
L4482-7 TEMP 2 Location: 157	воғкн6	09-MAY-95 11	-MAY-95 15-JUN-95
	BOFKH6 IA SPEC TO INCLUDE Cs137		-MAY-95 15-JUN-95
Location: 157 Water 1	S GAMMA SPEC LAL-0063	Hold:05-NOV-95	

LOGIN CHAIN OF CUSTODY REPORT (ln01) May 11 1995, 10:31 am

Login Number: L4482
Account: 596 Bechtel Hanford, Inc. * Richland, WA
Project: BECHTEL-HANFORD Bechtel Hanford Project

Laboratory Sample Number	Client Sample Number		Due Date
Water 1 S Water 1 S	GR ALP/BETA LAL-0060 Hold PU-ISOTOPIC LAL-0108 Hold SR-90 LAL-0196 Hold U TOTAL KPA LAL-0168 Hold	:05-NOV-95 :05-NOV-95	·
L4482-9 TEMP 2 "GAMMA Location: 157	BOFKH6 SPEC TO INCLUDE Cs137, Co-	09-MAY-95 11-MAY-95 -60, Ru-106"	15-JUN-95
L4482-10 TEMP 2 "GAMMA Location: 157	BOFKH6 SPEC TO INCLUDE Cs137, Co-	09-MAY-95 11-MAY-95 -60, Ru-106"	15-JUN-95
L4482-11 TEMP 2 "GAMMA Location: 157	BOFKH6 SPEC TO INCLUDE Cs137, Co-	09-MAY-95 11-MAY-95 -60, Ru-106"	15-JUN- 95
L4482-12 TEMP 2 "GAMMA Location: 157	BOFKH6 SPEC TO INCLUDE Cs137, Co-	09-MAY-95 11-MAY-95 -60, Ru-106"	15-JUN-95
L4482-13 TEMP 2 "GAMMA Location: 157	BOFKH6 SPEC TO INCLUDE Cs137, Co-	09-MAY-95 11-MAY-95 -60, Ru-106"	15-JUN-95
L4482-14 TEMP 2 "GAMMA Location: 157	BOFKH6 SPEC TO INCLUDE Cs137, Co-	09-MAY-95 11-MAY-95 -60, Ru-106"	15-JUN-95
L4482-15 TEMP 2 "GAMMA Location: 157	B0FKH6 SPEC TO INCLUDE Cs137, Co-	09-MAY-95 11-MAY-95 -60, Ru-106"	15-JUN-95
TEMP 2 Location: 157	BOFKH6 TRITIUM(H3) LAL-0066 Hold:	09-MAY-95 11-MAY-95	15-JUN-95
L4482-17 TEMP 2	, , ,	09-MAY-95 11-MAY-95	15-JUN-95
Location: 157 Water 1 S	TC-99 LAL-0169 Hold:	05-NOV-95	

LOGIN CHAIN OF CUSTODY REPORT (1n01) May 11 1995, 10:31 am

Login Number: L4482
Account: 596 Bechtel Hanford, Inc. * Richland, WA
Project: BECHTEL-HANFORD Bechtel Hanford Project

Laboratory Sample Number	Client Sample Number	Collect Receive Date Date J	Due PR Date
L4482-18 TEMP 2 Location: 157	воғкн6	09-MAY-95 11-MAY-95	15-JUN- 95
L4482-19 TEMP 2 Location: 157	во ГКН6	09-MAY-95 11-MAY-95	15-JUN-95
L4482-20 TEMP 2 Location: 157	воғкн6	09-MAY-95 11-MAY-95	15-JUN-95
L4482-21 TEMP 2 "ICP Note: 157	B0FKH7 METALS=Ca,Mg,Na,K,Fe,M	09-MAY-95 11-MAY-95 n,Si,Al,Bi,Se"	15-JUN-95
Filt H20 15 S	S CLP FURNACE S CLP ICP	Hold:05-NOV-95 Hold:05-NOV-95	
Water 1 8	REPORT TYPE S EDD - DISK DEL. S INORG TYPE 2 RPT + S RAD RPT TYPE 2	11-MAY-95 11-MAY-95	15-JUN-95

Page 3

Signature:

Bechtel Hanford, Inc		ЦОЭ СН	AIN OF CUSTO	DY/SA!	MPLE AI	NALYSI	IS REO	JEST			Page	= <u>1</u> of _	
Collector Company Contact									Telephone			around Priority	
to Let	•		G.L. Kasza					(509) 372				Normal	
Project Designation Sampling Location 200-BP-5 Groundwater Round 3 200 East					SAF No. B95-049						- 		
Ice Chest No.	37./		Field Logbook No. Offsite Property No.	· 112	9			Method of Federal E	xpress	-			
Shipped To Lockheed		*	Offsite Property No.	W95.0	1-050-1	-RG		Bill of La	ding/Air Bill	No.	1046A	フザルロ	
Possible Sample Hazards/Rem	arks		Preservation	ниоз	Cool 4°C	Cool 4°C	Cool 4°C	NaOII	HNO3	Cool 4°C	HICI	Cool 4°C	HNO3
			Type of Container	P/G	G	P	P	Р .	P/G	G	P	P	P/G
	-		No. of Container(s)	1	1	1	ı	2	8	ı	4	1	1
Special Handling and/or Stora Maintain samples between 2°C		•	Volume	iL	\$00mL	250mL	500mL	١Ļ	IL	500mL	IL	20mL	IL
SAI	MPLE ANALYSI	S		*1	Anions (IC)- F, Co, SO4, NO2, NO3, PO4	Alkalinity	TDS	Cyanide	*2	Tritium	Tc-99	Activity Scan	+3
Sample No.	Matrix*	Date Sampled	Time Sampled	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>	<u> </u>
BOFKH6	u	5.9.95	1/02	K	~	人	人	X	X	人	入	1	
BEFKH7	V	5.9.85	1107										X
				<u> </u>			<u> </u>					<u></u>	
	L-,			<u> </u>			<u> </u>		-				
										<u> </u>	<u> </u>	<u> </u>	
		<u> </u>		<u></u>	SPECIAL	INSTRUCT	IONS	<u> </u>			<u> </u>	Matrix*	
CHAIN OF POSSESSION	L	Sign/Print			i i			To be MY as				S = Si	ŭl
Relinguished By Cac	Date/Time	Received By Pogs	Les Buckter 5-1 Date/Ti	me / 400 9-15 me	*2 Gross Alj Total Ura *3 ICP Meta	pha; Gross Beta nium. als - to include (; Pu-238,-239 <i>/2</i> Ca, Mg, Na, K,	Ю; Sr-90; Gan Fe, Mn, Si, A	nma Spec - to inc	Actals - to includ clude Cs-137, Co Actals - to includ	5-60, Ru-106; de Se (filtered).	SO = So SL = Sk W = W O = Ol A = Ai	did udge aler il
Relinquished By Relinquished By	Date/Time	Received By Received By	Date/Ti	<u>-</u>	Contractor ac	knowledges that	t the 48-hour ho	ld time will no		• • • •	DS = DN DS = DN DL = DN DL = DN T = Tis WI = WI L = L = L V = Ve		rum Liquids issue lipe iquid egetation
LABORATORY Receiv	red By	wille	-Title Sample	Cash	1	····				Date/Time	0845	<u> </u>	let .
FINAL SAMPLE Dispos		- 1 (2000)	22.72.12		Disposed By			***		Date/Time	-		
The molthsodsid			_									-	

WHC/BHI SAMPLE CHECK-IN LIST

Date/Time Received: 5-11-95 / 9 mm SDG #: Mit
Work Order Number:
Shipping Container ID: 5mL-37/ Chain of Custody #
1. Custody Seals on shipping container intact? Yes [X] No []
2. Custody Seals dated and signed? Yes [X] No []
3. Chain-of-Custody record present? Yes [X] No [] 4. Cooler temperature
5. Vermiculite/packing materials is Wet [] Dry [X]
6. Number of samples in shipping container:
7. Sample holding times exceeded: Yes $[\times]$ No $[\]$
8. Samples have: tape hazard labels
9. Samples are:in good conditionleakinghave air bubbles
10. Were any anomalies identified in sample receipt? Yes [] No []
11. Description of anomalies (include sample numbers):
Sample Custodian: faulc Dams on: 5-11-95/9:002
Telephoned To: Kathleen Hall On 5-11-95/9: man By Paul Stuzis

Sample Login

Login Review Checklist

Lot Number 44482

The login review should be conducted by that person logging in the samples as well as a peer. Please use this checklist to ensure that such reviews occur in a uniform basis. Please sign and date below to verify that a login review has occurred. This checklist should be affixed to each login package prior to distribution.

For an effective login review, at a minimum, five reports from the login process are required. These are the chain of custody (or equivalent), the login chain of custody report, the sample receiving checklist, and the login quotation. Sefore beginning a review, ensure that these five components are available. For jobs with single component samples, the sample summary report may be ominited.

	ample Summary Report	Yes No
N	<u>/A</u>	
		. 1
I.	Are all sample IDs correct?	<u>×</u>
2.	Are all samples present?	*
3.	Are all matrices correct?	<u>×</u>
	(e.g., TCLP analyses should be on a TCLP !eachate, field blanks should be weser)	
4.	Are all analyses on the chain of custody/login quotation included?	<u>x</u> — —
5.	Are analyses logged in for the correct container?	<u>X</u>
_	(a.r., analyses requires preservation layers in for a preserved comminer and vice versa)	V
6.	Are samples logged in according to laboratory batching procedures?	<u> </u>
	(e.g., TCLP regular teaching and associated metalis/semivolatile organics should be logged in on the same b	nms,
T as	gin Chain of Custody Report	
<u> </u>	Colation of Capiton vincepore	
1	Are the Collect, Receive, and Due dates correct for every sample?	^
2.	Vicus commisses commisses the included?	$\overline{\Diamond}$ — —
4.	Have appropriate sample comments been included? (e.g., MSAMSD designation, comments from the client concerning method modifications)	*
	(e-fi unmitati menitummen treit me come commente de la commente del commente del commente de la commen	
Sam	raie Receiving Checklist	
<u> </u>	COLOR SECURIO FOR COLOR SECURIO SECURI	
ı.	Are any discrepancies between the chain of custody and the login noted?	1 17.7
1.	(e.g., client De different on chains of custody and boule labels, remples not sent, semples lost from breakage	— <i>— 144</i> 7;
	far 811 annual 1950 militaria and property as a grant of a series	
	•	
		•
		, -
	7/2016 x 2000 5-11-95 Mmlls 5	-11-95
		• •
	Primary review signature Date Secondary review signature	Date
	Filling testem signature pare	

Lockheed Analytical Services Sample Receiving Checklist

Client Name: Westingtouse - Hanford	Job No. 4	44/5a	Cooler ID:	hit	
COOLED CONDITION LIDON DECEIPT					
Temperature of cooler upon receipt:					ļ
temperature of temp. blank upon receipt:					
	Yes	No	Comments/Discrepancies		
custody seals intact	×				
chain of custody present	×				
blue ice (or equiv.) present/frozen	Ϋ́	,			
rad survey completed	×				
SAMPLE CONDITION UPON RECEIPT				<u> </u>	
	Yes	No	Comments/Discrepancies		
all bottles labeled	. Y				
samples intact	. X				
proper container used for sample type	X				
sample volume sufficient for analysis	- X				
proper pres. indicated on the COC	X				
VOA's contain headspace		NA			ı
are samples bi-phasic (if so, indicate sample ID'S):		119			
MISCELLANEOUS ITEMS					
MOCELLANIEOGOTTEMO	Yes	No	* Comments/Discrepancies		
samples with short holding times	X	 	ite.tel Dicente		
samples to subcontract		MR	ATTENTE		
ADDITIONAL COMMENTS/DISCREPANCIES					
			-	•	-
Completed by / date:	5-11-	95			<u> </u>
Sent to the client (date/initials):			s signature upon receipt:		
Notes: * = contact the appropriate CSR of any discrepancies immediately upo	on receipt				
** = please review this information and return via facsimilie to the appropria	to CSR (702) 36	1-8146			ì

Restoration Contractor ERC Team Interoffice Memorandum

Job No. 22192 Written Response Required: N

CCN: N/A
OU: 200-RP-5
TSD: N/A

ERA: N/A Subject Cride: 1995 Round 3 Samptin

TO: W. S. Thompson N3-06

DATE: April 21, 1995

COPIES: D. B. Erb

H6-01

FROM: S. K. De Mers
Radiological Controls
N3-06/376-2764

SUBJECT: 1995 Round 3 sampling for 200-BP-5

There is no need to perform total activities prior to offsite shipment to NRC licensed labs of samples taken from the attached list of wells.

The wells listed in the attachment were reviewed for radiological content based on the previous 4 years of sampling data. No well listed has a β activity in excess of 100,000 pCi/l (<.1 uCi/sample based on a 1 liter sample size) nor any α activity in excess of 10,000 pCi/l (<.01 uCi/l based on a 1 liter sample). All wells show activities < 2,000 pCi/gm (< 2 nCi/gm D.O.T. limit). The highest activity in recent samples is 17,000 pCi/l β and 170 pCi/l α .

Radiological monitoring during sampling will only be required if the wells are located in radiological areas or if the wells themselves are labeled with radiological stickers. Monitoring requirements for down hole work such as pump removal will be determined based on the history of each well on a case by case basis.

skd

DISSOLVED METALS RESULTS

Client Sample ID: BOFKH7	Date Collected: 05-09-95	Matrix: filtered water
LAL Batch ID(s): 511 bhD	Date Received: 05-11-95	

Constituents	Method	Concentration (mg/L)	IDL (mg/L)	RDL (mg/L)	Data Qualifier(s)	Date Analyzed	LAL ID
Aluminum	CLP -	<0.057	0.057	0.20	U	06-16-95	L4482-21
Bismuth	CLP	0.0014	0.001	0.005	B N	06-28-95	L4482-21
Calcium	CLP	34	0.056	5.0		06-16-95	L4482-21
Iron	CLP	0.019	0.010	0.10	В	06-16-95	L4482-21
Magnesium	CLP	10	0.057	5.0		06-16-95	L4482-21
Manganese	CLP	<0.002	0.002	0.015	บ	06-16-95	L4482-21
Potassium	CLP	8.2	0.363	5.0		06-16-95	L4482-21
Selenium	CLP	<0.003	0.003	0.005	w	06-17-95	L4482-21
Silicon	CLP	26	0.012	0.10		06-22-95	L4482-21
Sodium	CLP	23	0.041	5.0		06-16-95	L4482-21

Comments:	 	17-37	,	

TOTAL METALS RESULTS

Client Sample ID: BOFKH6	Date Collected: 05-09-95	Matrix: water
LAL Batch ID(s): 511 bhT	Date Received: 05-11-95	

Constituents	Method	Concentration (mg/L)	IDL (mg/L)	RDL (mg/L)	Data Qualifier(s)	Date Analyzed	EAL ID
Aluminum	CLP	<0.057	0.057	0.20	U	06-20-95	L4482-2
Bismuth	CLP	<0.001	0.001	0.005	U	06-28-95	L4482-2
Calcium	CLP	34	0.056	5.0		06-20-95	L4482-2
Iron	CLP	0.17	0.010	0.10		06-20-95	L4482-2
Magnesium	CLP	10	0.057	5.0		06-20-95	L4482-2
Manganese	CLP	<0.002	0.002	0.015	U	06-20-95	L4482-2
Potassium	CLP	8,8	0.363	5.0		06-20 - 95	L4482-2
Selenium	CLP	< 0.003	0.003	0.005	w	06-19-95	L4482-2
Silicon	CLP	28	0.012	0.10		06-22-95	L4482-2
Sodium	CLP	24	0.041	5.0		06-20-95	L4482-2

Comments:	 	

Sample Results

Client Sample ID: B0FKH6	Date Collected: 09-MAY-95
Matrix: Water	Date Received: 11-MAY-95
Percent Solids: N/A	

Constituent	Units	Method	Result	Project Reporting Limit	Data Qualifier(s)	Date Analyzed	LAS Batch ID	LAS Sample ID
Total Dissolved Solids	mg/L ·	160.1	280	40.		16-MAY-95	22839	L4482-5
Chloride	mg/L	300.0	8.5	0.020		11-MAY-95	22732	L4482-3
Fluoride	mg/L	300.0	0.33	0.10		11-MAY-95	22737	L4482-3
Nitrate-N	mg/L	300.0	11.	0.020		11-MAY-95	22733	L4482-3
Nitrite-N	mg/L	300.0	< 0.002	0.010	υ	11-MAY-95	22734	L4482-3
Ortho Phosphate	mg/L	300.0	< 0.020	0.10	U	11-MAY-95	22736	L4482-3
Sulfate	mg/L	300.0	16.	0.10		11-MAY-95	22735	L4482-3
Alkalinity, total (as CaCO3)	mg/L	310.1	110	30.		16-MAY-95	22859	L4482-4
Bicarbonate Alka as CaCO3	mg/L	310.1	110	30.		16-MAY-95	22859	L4482-4
Carbonate Alka as CaCO3	mg/L	310.1	< 10.	30.	υ	16-MAY-95	22859	L4482-4
Total Cyanide	mg/L	CLP	0.034	0.020	D(1:2)	16-MAY-95	22874	L4482-6

Lockheed Analytical Laboratory SAMPLE SUMMARY REPORT (su02) Bechtel Hanford, Inc. * Richland, WA

Client	LAL	SDG	Method
Sample Number	Sample Number	Number Matrix	
BOFKH6 -	L4482-1 L4482-2 L4482-3 L4482-3 L4482-3 L4482-3 L4482-3 L4482-3 L4482-3 L4482-4 L4482-5 L4482-6 L4482-8 L4482-8 L4482-8 L4482-8 L4482-8 L4482-8 L4482-8 L4482-16 L4482-16	Water	SCREENING - CLP FURNACE- CLP ICP - 300.0 CHLORIDE - 300.0 NITRATE - 300.0 NITRITE - 300.0 PHOSPHATE 300.0 SULFATE - 310.1 ALKALINIT' 160.1 TDS - CLP CYANIDE - GAMMA SPEC LAL-(GR ALP/BETA LAL- PU-ISOTOPIC LAL- SR-90 LAL-0196 - U TOTAL KPA LAL- TRITIUM(H3) LAL- TC-99 LAL-0169 -
BOFKH7 —	L4482-21	Filt H20	CLP FURNACE _
	L4482-21	Filt H20	CLP ICP _
REPORT TYPE -	L4482-22 L4482-22 L4482-22	Water Water Water	EDD - DISK DELTINORG TYPE 2 RPT RAD RPT TYPE 2

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOFKH6

LAL Sample ID: L4482-8

Date Collected:

09-HAY-95

Date Received: 11-MAY-95

Matrix:

Water

Login Number: L4482

SDG:

LK4482

Ac-228(Ra-228)	31-KAY-95	GANNA SPEC LAL-0063 23211	9.	26.	41.		pCi/L
Co-58	31-NAY-95	GAMMA SPEC LAL-0063 23211	2.7	5.1 7.9	8.6		pCi/L
Co-60	31-HAY-95	GAMMA SPEC LAL-0063_23211	24.4	7.9	8.9		pCi/L
Cs-137	31-MAY-95	GAMMA SPEC LAL-0063_23211	-7.2	4.0	12.		pCî/L
Eu-152	31-NAY-95	GAMMA SPEC LAL-0063_23211	-13.	13.	49.		pCi/L
Eu-154	31-HAY-95	GAMMA SPEC LAL-0063_23211	. -3.	13.	34.		pCi/L
Eu-155	31-KAY-95	GANNA SPEC LAL-0063_23211	-2.6	6.4	19.		pCi/L
Fe-59	31-HAY-95	GANNA SPEC LAL-0063_23211	1.9	8.7	19.		pCi/L
Pb-212	31-HAY-95	GANNA SPEC LAL-0063_23211	5.	12.	16.		pCi/L
Pb-214(Ra-226)	31-HAY-95	GANNA SPEC LAL-0063_23211	12.	13.	18.		pCi/L
Ra-226(GANHA)	31-KAY-95	GANNA SPEC LAL-0063_23211	-100	130	190		pCi/L pCi/L pCi/L
Ru-106	31-KAY-95	GANHA SPEC LAL-0063_23211	10.	43.	<i>7</i> 3.		pCi/L
U-235(GAHHA)	31-NAY-95	GAHNA SPEC LAL-0063_23211	-7.	30.	44.		pCi/L
Gross Alpha	12-JUN-95	GR ALP/BETA LAL-0060_23215	2.8	2.0	2.7	C	pCi/L
Gross Beta	12-JUN-95	GR ALP/BETA LAL-0060_23215	883.	46	3.1		pCi/L
Pu-238	12-JUN-95	PU-ISOTOPIC LAL-0108_23154	-0.035	0.034	0.19		pCi/L
Pu-239/40	12-JUN-95	PU-ISOTOPIC LAL-0108_23154	0.05	0.12	0.19		pCi/L
Total radio-strontium	09-JUN-95	SR-90 LAL-0196_23179	-0.21	0.42	0.75		pCi/L
Uranium	09-JUN-95	U TOTAL KPA LAL-0168_23131	3.31	0.17	0.20		ug/L

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOFKH6

LAL Sample ID: L4482-16

Date Collected:

09-MAY-95

Date Received: 11-MAY-95

Matrix:

Water

Login Number: L4482

Constituent	Analyzed	Batch	Activit	y Error	MDA	Data	Qual Units
н-3	26-MAY-95	TRITIUM(H3) LAL-0066_23181	360	220	260		pCi/L

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project_(Project BECHTEL-HANFORD)

Client Sample ID: BOFKH6

LAL Sample ID: L4482-17

Date Collected:

09-MAY-95

Date Received: 11-MAY-95

Matrix:

Water

Login Number: L4482

Constituent	Analyzed	Batch	Activity	Error	MDA	DataQual Units
Tc-99	31-MAY-95	TC-99 LAL-0169_23139	1560	130	7.1	pCi/L

Notebook No. 0874

_ Continued From Page

SECONDARY / WORKING LEVEL STANDARD DILUTION RECORD

	arce Information
Isotope:	Am-241 And Sry-90 Yes
From NIST traceable standard?:	Yes 788 133-1
Vendor or Certificate I.D. # of parent standard:	Am-241 FPL = 388-100-1 Sn-90 NIST SRM 4919G Am-241 91-0225-60-1
Diluted source logbook I.D. #:	Sr-90 91-6225-30-2
Balance verification?:	' Yes
Diluent used:	0.1N HNO3

Di	lution
*Diluent:	0.1 N HN 03 + 42 mg Sn (NO3) 1/mL
*Density of diluent (g/ml):	ΑυΑ
a. Parent standard activity:	Am-241 9810 CC/mL Sn-90 6000 CC/nL on 8/1/90 Am-241 0.5 nh
b. Amount of standard transferred:	Am-241 0.5mh - Sn-90 0.5mL
c. Total amount of dilution:	500 mL
d. Activity of dilution [a * b / c]:	Any-241 9.81 pc:/m/ 5n4-90 6,0 pc:/m/ m 8/1/90 1019 pc:/m/ on 8/1/94
Dilution logbook I.D. #:	93-0474-94
Prepared by: De Italian Reviewed by: Hance Wom	Preparation date: 8/1c/94 Review date: 8/1c/94
If the diluent remains unchanged from the diluent used for the dilution sou density conversion. If the diluent changes, a weighted proportion density c	rce, then a weight dilution of a volume unit source can be performed without a conversion is necessary.
LAL-9	01-SOP-0174

		Read and Understood By	
Oult	3/20/5-		131
Signed	Date	Signed	Date

S/&. Willed to 150 mile 91- 0225-60-1 ANDO30,

CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION

Radionuclida

Am-241

Customer: LOCKHEED ENGINEERING & SCIENCES Co.

Half Life:

 $432.7 \pm 0.5 \text{ years}$

P.O.No.:

06LAB1245

Catalog No.:

7241

Reference Date:

November 1 1991

Source No.:

388-100-1

Contained Radioactivity:

0.997

may.

12:00 PST.

Description of Solution

a. Mass of solution:

5.0007

AmCl3 in 0.5N HCl

b. Chemical form: c. Carrier content:

None added

d. Density:

1.0077

20°C.

Radioimpurities

None detected

Radioactive Daughters

None detected

Radionnelida Concentration

0.1994

μCi/gram.

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

±2.0%

b. Random uncertainty in assay:

±0.7%

c. Random uncertainty in weighing(s):

±0.0%

d. Total uncertainty at the 99% confidence level:

±2.7%

NIST Traccability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Notes

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15)

ISOTOPE PRODUCTS LABORATORIES

1800 No. Keystone Street., Burbank, California 91504

(818) 843 - 7000

THIS IS A PHOTOCOPY OF THE CERTIFICATE WHICH IS BEING MAILED TO YOU UNDER SEPARATE COVER.

National Institute of Standards & Technology

Certificate

Standard Reference Material 4919-G Radioactivity Standard

Radionuclide

Strontium-90

Source identification

4919-G

Source description

Solution in NIST borosilicate-glass ampoule (1)*

Solution composition

Strontium-90 plus yttrium-90 plus approximately 95 µg each of non-radioactive strontium and yttrium per gram of 1-molar hydrochloric acid (2)

Mass

Approximately 5.0 grams

Radioactivity concentration

4.514 x 103 Bq g1

Reference time

1200 EST August 1, 1990

Overall uncertainty

1.05 percent (3)

Photon-emitting impurities

None observed (4)

Alpha-particle-emitting impurities

None observed (5)

Half life

 $28.5 \pm 0.2 \text{ years}^{(9)}$

Measuring instrument

 $4\pi\beta$ liquid-scintillation counter

This standard reference material was prepared in the Center for Radiation Research, Ionizing Radiation Division, Radioactivity Group, Dale D. Hoppes, Group Leader.

Gaithersburg, MD 20899 xuary, 1991

William P. Reed, Acting Chief
Office of Standard Reference Materials

^{*}Notes on back

NOTES

(1) Approximately five milliliters of solution. Ampoule specifications:

body diameter	$16.5 \pm 0.5 \text{mm}$
wall thickness	$0.60 \pm 0.04 \text{ mm}$
barium content	less than 2.5 percent
lead oxide content	less than 0.02 percent
other heavy elements	trace quantities

- Solution density is 1.014 \pm 0.002 g/mL at 21.5 °C.
- The overall uncertainty was formed by taking three times the quadratic combination of standard deviations of the mean, or approximations thereof, for the following:

a) liquid-scintillation measurements	0.01 percent
b) gravimetric measurements	0.05 percent
c) dead time	0.10 percent
d) background	0.01 percent
e) detection efficiency	0.30 percent
f) decay-scheme data	0.10 percent
g) half life	0.01 percent
h) radionuclidic impurities	0.10 percent

(4) The limit of detection for photon-emitting impurities is:

 $0.01 \ \gamma \ s^{-1}g^{-1}$ between 50 and 1900 keV.

(5) The limit of detection for alpha-particle-emitting impurities is:

 $0.05 \ \alpha \ s^{-1}g^{-1}$.

(6) NCRP Report No. 58, 2nd Edition, February 1985, p. 365.

For further information please contact Dr. Larry Lucas at (301) 975-5546.

4919-G

NOTES ON THE USE OF STANDARD REFERENCE MATERIAL 4919G, STRONTIUM-90

The activity of the strontium-90 in the ampoule is given per gram of solution. If transfers are made by volume, the density given on the certificate can be used to compute the activity per unit volume. The activity given is the strontium-90 activity only. Because the strontium-90 is in equilibrium with its yttrium-90 daughter, which is also a beta-particle emitter, the activity given should be doubled to get the corresponding total beta-particle-emission rate.

If the solution is to be used for making quantitative sources, it should be kept tightly sealed so that evaporation, and the consequent change in the radioactivity concentration, is minimized. Glass containers are best for storage.

Dilute solutions of strontium-90 are often assayed by liquid-scintillation counting. We recommend that carrier solution containing approximately 1 mg of non-radioactive strontium be added first to the liquid-scintillation cocktail. We typically use a carrier solution containing 4 mg of strontium per mL of 0.5- molar hydrochloric acid. When 0.25 mL of this solution is added to 10 mL of emulsion-type liquid-scintillation cocktail, the resulting 1 mg of strontium per vial is generally sufficient to prevent the radioactive strontium-90 from plating out on the vial walls. A set of liquid-scintillation vials that cover a range of sample-solution masses should be prepared and monitored over several days to ensure that the efficiency is constant.

The beta-particle counting efficiency will be somewhat less than unity. A correction for the loss of low-energy beta particles can be computed using the integral-discriminator-extrapolation technique (G. Goldstein, <u>Nucleonics</u> 23 (1965) 67) or using the liquid-scintillation efficiency-tracing technique with tritium (B.M. Coursey et al, Int. J. Radiat. Isotopes 37 (1986) 403).

The activity concentration given on the certificate is as of 1200 hours Eastern Standard Time, August 9, 1990. To convert from EST to your local time, the table given below can be used.

TO CONVERT FROM EST TO:

EDT	Add	1 hour
CDT	Same as E	ST
CZE	Subtract	1 hour
ME	Subtract	1 hour
MET	Subtract	2 hours
PDT	Subtract	2 hours
PST	Subtract	3 hours
UTC	Add	5 hours

WORK GROUP REPORT (wk02)

May 22 1995, 11:01 am

Work Group: PU-ISOTOPIC LAL-0108_23154 for Department: 12 Radiation Prep.

Created: 22-MAY-95 Due: 22-MAY-95

Operator:

Self-Registration of the Control of	distriction of the second seco		****	· · · · · · · · · · · · · · · · · · ·
54MBB1 MB 82-8 Bechtel Hanford, Inc.	L4482-8 Lab.Ctrt Sample Method Blank BOFKH6	Page 1 S PU-ISOTOPIC LAL-0108 Water S PU-ISOTOPIC LAL-0108 Water S PU-ISOTOPIC LAL-0108 Water S PU-ISOTOPIC LAL-0108 Water	WIP U 22-MAY-95 WIP U 22-MAY-95 WIP U 22-MAY-95 WIP U 15-JUN-95	156CART-2
ments:		Ca. (A) Part STAR		
4 156H-A100	AMMA SPEC TO INCLUDE Ca137,	C0-00; R0-100-		
# 156V 6031 # A033				
¹⁷ 35				
	200			
				**
	2000 1000 1000			
				•
	30 J. Ave.			

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory-Las Vegas Nuclear Radiation Assessment Division

Calibration Certificate

Description	Principal / adienuclide PILITCNIUM-239 Half-life 2.4x104 years
	Nominal activity 59 nano curses
	Naminal valume 5 ml in ampaule/bettle number 2510-1
Measurement	Activity of principal radionuclide
	Activity per gram of this solution
	11.8 nano cures et Plutonium-239
	at 0400 hours PST on December 13, 1990
	Activity of daughter radionuclide
	The principal activity was assumptioned at the quased time by
	Cornes Per prom
	of the daughter musikle
	Total mass of this selution
	APPROX. 5.0
	Method of messurement
	The activity of the primary solution was measured
	by an internal gas flow proportional counter.
<u>4.</u>	The activity of the dilution was measured by
- • •	liquid scintillation counting.
Useful Life	This radianualide has decayed shrough half fives since it was ablamed by SMSL-LV
	We regarment that this solution should not be used after

		states that activities of nuclides, if any, were			ie
	(1) see remar		less than equal to		the principal activity
	(2)		less than equal to	% of	the principal activity
	(3)		less than equal to	* •	the principal activity
		urity (1) is not (2) is not oted figures of the prin			
Random Errors	. 1	,			
		this standard was suci			
		the principal activity h			
	(The 99.7% confi for the degree of	dence limits are given freedom (n-1)).	by t(sm) where t is	obteined from t	he student t factor
	known uncertain positive and negr	ncertainty due to the a ty of the standard) is o stive systematic error (btained by the sepe	rate erithmetic	summetion of the
•	+2.7 % or	- 2.7 ×	•		
		tainty (often called acc : from the true value.		•	
		and the worst case or rtainty is therefore calc 6 3.1 % of the	timate of the system	matic errors (+ i of + [tem) + 8]	8) [t(sm) +8]
Decay Schemes	The overall uncer and is + 3,1 ! This standardizate daughter nuclides	tainty is therefore cale - 3,1 % of the control of	itimate of the system culated on the besie he quoted radioactive forwing secumptions forwance for error in	matic errors (+) of + [item) +8] e concentration of the principle i these sesumpt	& ') [t(sm) +&] nuclide, its ions or the
Decay Schemes	The overall uncer and is + 3.1 ! This standardizate daughter nuclides assumption of questions.	is therefore calc. - 3,1 % of the state of	timate of the system culated on the besie ne quoted radioactive fowing assumptions fowance for error in in included in the st	matic errors (+ of + [item) +&] e concentration of the principle these sesumpt tatement of ecc	& ') , - [t(sm) +&] nuclide, its ions or the uracy ebove).
Decay Schemes	The overall uncer and is + 3.1 ! This standardizate daughter nuclides assumption of questions.	is therefore calc. - 3,1 % of the second on the following and impurities (no elected half-life have been and impurities).	timate of the system culated on the besie ne quoted radioactive fowing assumptions fowance for error in in included in the st	matic errors (+ of + [item) +&] e concentration of the principle these sesumpt tatement of ecc	& ') , - [t(sm) +&] nuclide, its ions or the uracy ebove).
Chemics!	The overall uncer and is + 3.1 9 This standardizate daughter nuclides assumption of que Plutonium-239	trainty is therefore calc. - 3,1 % of the solution is besed on the following and impurities (no elected half-life have been and impurities spanding.	timate of the systemical stell on the besie to quoted radioective flowing essumptions flowence for error in included in the state assumed.	matic errors (+ of + [item) +&] e concentration of the principle these sesumpt tatement of ecc	nuclide, its ions or the aracy above).
Chemical Composition:	The overall uncer and is + 3.1 ! This standardizes daughter nuclides assumption of que Plutonium-23! by alpha emis	trainty is therefore calc. - 3,1 % of the solution is besed on the following and impurities (no elected half-life have been and impurities spanding.	timate of the system culated on the besie to quoted radioactive forwing secumptions forwance for error in included in the state assumed. Oth	e concentration of the principle these sesumpt seement of ecc to decay 1	nuclide, its ions or the aracy above).
	The overall uncer and is + 3.1 ! This standardizes daughter nuclides assumption of que Plutonium-23! by alpha emis	trainty is therefore calc. - 3,1 % of the solution is besed on the following and impurities (no elected half-life have been and impurities spanding.	timate of the system culated on the besie to quoted radioactive forwing secumptions forwance for error in included in the state assumed. Oth	matic errors (+) of + [stam) +8] e concentration of the principle statement of ecc to decay 1	nuclide, its ions or the aracy above).
Chemical Composition:	The overall uncer and is + 3.1 ! This standardizes daughter nuclides assumption of que Plutonium-23! by alpha emis	risinty is therefore calcolors. - 3,1 % of the solution of the following impurities (no elected half-life have been and impurities ession.	timate of the system culated on the besie to quoted radioactive forwing secumptions forwance for error in included in the state assumed.	matic errors (+) of + [stam) +8] e concentration of the principle statement of ecc to decay 1	nuclide, its ions or the aracy above).
Chemics! Composition: of Solution	The overall uncer and is + 3.1 ! This standardizest daughter nuclides assumption of que Plutonium-23! by alpha emis	risinty is therefore calc - 3,1 % of the control o	timate of the system culated on the besieve quoted radioactive forwing assumptions forwance for error in an included in the state assumed. Oth	matic errors (+ of + [stem) + 8] e concentration of the principle these secumpt seement of ecc to decay 1 er components: Nitric acid	nuclide, its ions or the uracy above). O percent
Chemics! Composition: of Solution	The overall uncer and is + 3.1 ? This standardizes daughter nuclides assumption of que Plutonium-239 by alpha emis Cervier content per Pu-238	risinty is therefore calc - 3,1 % of the control o	culated on the system culated on the besieve quoted radioactive forwards for error in the included in the state assumed. Oth Oth Oth	matic errors (+ of + [stem) + 8] e concentration of the principle these secumpt tesement of ecc to decay 1 er components: Nitric acid	nuclide, its ions or the uracy above). O percent
Chemics! Composition of Solution Remarks	The overall uncered and is + 3.1 ? This standardizate daughter nuclides assumption of que Plutonium-23? by alpha emission of the content per content per content per pu-238 Pu-240	risinty is therefore calc - 3,1 % of the control o	timate of the system culated on the besieve quoted radioactive forwing assumptions forwance for error in an included in the state assumed. Oth	matic errors (+) of + [stem) + &] e concentration of the principle these sesumpt seement of ecc to decay 1 er components: Nitric acid	nuclide, its ions or the uracy above). O percent
Chemics! Composition of Solution Remarks	The overall uncer and is + 3.1 ? This standardizes daughter nuclides assumption of que Plutonium-239 by alpha emis Cervier content per Pu-238	risinty is therefore calcolors. - 3,1 % of the following of the following impurities (no elected half-life have been and impurities and impurities and impurities are are followed impurities. Freeervative: 0.033% 4.6x10-5% 1.5x10-3% 8.8x10-6%	culated on the system culated on the besie to quoted radioective lowence for error in the included in the state of the total of the tot	matic errors (+) of + [stem) + 8] e concentration of the principle these sesumpt seement of ecc to decay 1 er components: Nitric acid activity al activity al activity al activity	nuclide, its ions or the wacy above). O percent
Chemics! Composition of Solution Remarks	The overall uncered and is + 3.1 ? This standardizate daughter nuclides assumption of que Plutonium-239 by alpha emission of the property of	risinty is therefore calcolors. - 3,1 % of the control of the con	culated on the system culated on the besie to quoted radioective lowence for error in the included in the state assumed. Oth 4M of the total of t	matic errors (+) of + [stem) + 8] e concentration of the principle these sesumpt seement of ecc to decay 1 er components: Nitric acid activity al activity al activity al activity	nuclide, its ions or the wacy above). O percent
Chemical Composition:	The overall uncered and is + 3.1 ? This standardizate daughter nuclides assumption of que Plutonium-239 by alpha emissions of the purity content per purity content	risinty is therefore calcolors. - 3,1 % of the following of the following impurities (no elected half-life have been and impurities and impurities and impurities are are followed impurities. Freeervative: 0.033% 4.6x10-5% 1.5x10-3% 8.8x10-6%	culated on the system culated on the besie to quoted radioective lowence for error in the included in the state of the total of the tot	matic errors (+) of + [stem) + 8] e concentration of the principle these sesumpt seement of ecc to decay 1 er components: Nitric acid activity al activity al activity al activity al activity al activity	nuclide, its ions or the aracy above). O percent

ISOTOPE VOLUME DILUTION RECORD

Isotope: Pu - 237 Vendor: EPA	Reference Date: 0 460 PSI 12-13	
Total Activity: 59 Naco Ci Vendor ID: 2510 -)	Receive Date: 8-26-199	
Total wt.(g) 5 NIST traceable Y/N Cert #	14 2.4 × 104 years	
Activity UNITS/g //- Presci/g-converted to dpm/g 26/96	Receiver's Name J. M.	
***************************************	······································	
PRIMARY DILUTION: Prepared by volume #		
Date: 9/23/91 Preparer's Name	·	
a: Decay corrected activity: 26/96 dpm/g (* if <100yr	decay correct to preparation date)	
b: Wt. of Volumetric: 61.7254 g Balance wt	check done 🔛	
c: Wt. Volumetric + source: 67.5322 g	Diluent: 4 H HNO3	
d: Wt. of source transfered (c-b): 5.6068 g e: Wt.	of diluent + source: <u>//2.5429</u> g	
f: Vol. of diluent + source: 100 mL g: Activity of dilut	ion (a°d/e): <u>/3°5</u> dpm/g	
h: Density (e/f): 1.1254 g/mL i: Activity by volume (g*h): 1469 dpm/mL		
Dilution Log Book ID: 91 - 199-53 (91-225-27-1) transferred to 1		
Transeria to 9.		
Working Level Dilution: Prepared by volume	- .	
Date: 9/23/91 Preparer's Name. Tynn Jusci		
A: Decay corrected activity: 1469 dpm/ml (* if <100yr	decay correct to preparation date)	
B: Wt. of Volumetric: N/A g	Balance wt check done ()	
C: Wt. Volumetric + source: N/A g	Diluent: 4M HNO 2	
D: Wt. of source transfered:g	iluent + source : <u>N/A</u> g	
F: Val. of source transferred: mL G: Vol. of e	diluent + source : mL	
H: Activity of dilution (A*F/E): //A dpm/g I: Den	nsity (E/G): N/A g/mL	
I: Activity by volume (A*F/G) (H*I) or (A*D/E):/4.7	dpm/mL	
1: Activity by volume (A*F/G) (H*I) or (A*D/E):	-1 91-225-27-2 V	
Reviewed by: Date: 4(4/43		

Continued From Page _

SECONDARY/WORKING LEVEL STANDARD DILUTION RECORD

Dilution Source Information		
Isotope:	Pu - 23 9	
Parent Barcode Number	PA 0029	
Vendor or Certificate I.D. # of Parent St		
Diluted Source Logbook I.D. #:	91-225-27-1	
Balance Verification?:	<u>yes</u>	
Diluent Used:	4 H HNO3	
Dilution		
*Diluent:	4M ffNO3	
Density of diluent (g/ml):	N/A g/ml	
a: Parent Specific Activity:	661.71 pci/g pCi/nl	
b: Amount of Source Transferred:	1.7491	
c: Total amount of Dilution:	115.89 g	
: Total Volume of Dilution:		
e: Activity of Dilution [a * b / c]:		
f: Activity of Dilution (a * b / d):		
Dilution Logbook I.D. #: 1-2!	14564- 94-617-31-1	
Prepared By: Janes Wine	Preparation Date: (-21-95	
Reviewed By: Gre Httum	Review Date: 1/21/85	
f the diluent remains unchanged from the diluent uses be performed without a density conversion. If	used for the dilution source, then a weight dilution of a volume unit source	

Read and Understood By

National Institute of Standards & Technology

THIS IS A PHOTOCOPY OF THE CERTIFICATE WHICH IS BEING MAILED TO YOU UNDER SEPARATE COVER.

Standard Reference Material 4334E Radioactivity Standard

Radionuclide

Plutonium-242

Source identification

4334E

Source description

Liquid in flame-sealed NIST borosilicate-glass ampoule (1)*

Solution mass

Approximately 5.8 grams

Solution composition

Plutonium-242 in 5 mol·L¹ nitric acid ⁽³⁾

Reference time (Purification time)

1200 EST, 18 December 1989

Radioactivity concentration

26.37 Bq·g1

Overall uncertainty

1.12 percent (9)

Radionuclidic impurities

See Table 1 (4)

Half life

 $(3.733 \pm 0.012) \times 10^{5} \text{ years}$

Measuring instrument

Two $4\pi\alpha$ liquid-scintillation counters, a calibrated germanium detector system, and a silicon surface-barrier detector

This standard reference material was prepared in the Physics Laboratory, Ionizing Radiation Division, Radioactivity Group, J.M. Robin Hutchinson, Acting Group Leader.

Gaithersburg, MD January 1993

William P. Reed, Chief Standard Reference Materials Program

*Notes on back

National Institute of Standards & Technology

THIS IS A PHOTOCOPY OF THE CERTIFICATE WHICH IS BEING MAILED TO YOU UNDER SEPARATE COVER.

Standard Reference Material 4334E Radioactivity Standard

Radionuclide

Plutonium-242

Source identification

4334E

Source description

Liquid in flame-sealed NIST borosilicate-glass ampoule (1)*

Solution mass

Approximately 5.8 grams

Solution composition

Plutonium-242 in 5 mol-L-1 nitric acid (3)

Reference time (Purification time)

1200 EST, 18 December 1989

Radioactivity concentration

26.37 Bq·g¹

Overall uncertainty

1.12 percent (3)

Radionuclidic impurities

See Table 1 (4)

Half life

 $(3.733 \pm 0.012)^{-1} \times 10^{5} \text{ years}^{(5)}$

Measuring instrument

Two 4ma liquid-scintillation counters, a calibrated germanium detector system, and a silicon surface-barrier detector

This standard reference material was prepared in the Physics Laboratory, Ionizing Radiation Division, Radioactivity Group, J.M. Robin Hutchinson, Acting Group Leader.

Gaithersburg, MD January 1993

William P. Reed, Chief Standard Reference Materials Program

*Notes on back

NOTES

(1) Approximately five milliliters of solution. Ampoule specifications:

body diameter wall thickness $0.60 \pm 0.04 \text{ mm}$ barium content lead oxide content other heavy elements $16.5 \pm 0.5 \text{ mm}$ $0.60 \pm 0.04 \text{ mm}$ less than 2.5 percent less than 0.02 percent trace quantities

- Solution density is $1.170 \pm 0.001 \text{ g-mL}^{-1}$ at $21.65 \,^{\circ}\text{C}$.
- The overall uncertainty was formed by taking three times the quadratic combination of the standard deviations of the mean, or approximations thereof, for the following:

a) alpha-particle-emission-rate measurements	0.02 percent
b) background	0.03 percent
c) livetime	0.05 percent
d) detection efficiency	0.25 percent
e) count-rate-vs-energy extrapolation to zero energy	0.25 percent
f) half life	0.00 percent
g) gravimetric measurements	0.10 percent
h) radionuclidic impurities	0.00 percent

- Values for ²³⁸Pu + ²⁴¹Am and for ²³⁹Pu + ²⁴⁰Pu were calculated based upon measurements performed at the Lawrence Livermore National Laboratory (LLNL) shortly after purification of the ²⁴²Pu in December of 1989. Values for ²³⁹Pu + ²⁴⁰Pu and for ²⁴¹Pu were calculated based upon measurements performed at the National Institute of Standards and Technology (NIST) in August of 1990.
- (5) Evaluated Nuclear Structure Data File (ENSDF), February 1990.

For further information please contact Dr. Larry Lucas at NIST.

Telephone: (301) 975-5546 FAX: (301) 926-7416

- <u>Jan</u>

TABLE 1

RELATIVE ACTIVITY OF RADIONUCLIDIC IMPURITIES AT REFERENCE TIME 1200 EST, 18 DECEMBER 1989 (*)					
		RELATIVE ACTIVIT	Y AS DETERMINED BY		
RADIONUCLIDE	HALF LIFE (YEARS)	LLNL	NIST		
²⁵⁸ Pu	87.74 ± 0.04 (*)	²³⁸ Pu + ²⁴¹ Am <0.000 025 ^(c)			
²³⁹ Pu	24119.± 26 ^(b)				
²⁴⁰ Pu	6570 ± 6 (b)	²³⁹ Pu + ²⁴⁰ Pu <0.000 005 ^(c)	²³⁹ Pu + ²⁴⁰ Pu <0.000 043 ^(c)		
²⁴¹ Pu	14.35 ± 0.10 (b)	********	$0.162 \pm 0.002(1\sigma)^{(4)}$		
²⁴²Pu	373300 ± 1200 (*)	1.000 000	1.000 000		
²⁴¹ Am	432.2 ± 0.5 ^(b)	²³⁸ Pu + ²⁴¹ Am <0.000 025 ⁽⁴⁾	0.000 000 assumed		

- (e) Reference time is the time of purification of the plutonium-242.
- (b) Evaluated Nuclear Structure Data File (ENSDF), February 1990.
- Using alpha-particle spectrometry, no alpha-particle emission was detected that could reliably be ascribed to these radionuclides. The value shown is an estimated upper limit based upon background and counting statistics.
- The plutonium-241 relative activity at reference time was calculated from a gamma-ray measurement of the americium-241 ingrowth as of 18 August 1990.

Dear Customer:

	Data 3	sheet (1	Reference Material(s) (SRM'(s)) for which you have requested a Material Safety MSDS), 4334E, Pu-242 is excluded from coverage in our regular of more than 100 sheets for one or more of the following reasons:
	1	a	The SRM is an article, as that word is defined in paragraph (c) of section 1910.1200 of title 29 of the Code of Federal Regulations which does not release otherwise result in exposure to a hazardous chemical, under normal conditions of use.
	2		The SRM has been determined to be non-hazardous by the National Institute of Standards and Technology under paragraph (d) of section 1910.1200 of title 29 of the Code of Federal Regulations. The SRM will not release or otherwise result in exposure to a hazardous chemical under normal conditions of use.
•	3	0	The SRM is a pesticide or hazardous waste labeled according to regulations issued by the Environmental protection Agency.
	4		The SRM is a food, food additive, or drug labeled according to regulations issued by the Food and Drug Administration.
	5		The SRM is a wine labeled according to regulations issued by the Bureau of Alcohol, Tobacco, and Firearms.
	6		The SRM is a radioactive material labeled according to regulations issued by the Nuclear Regulatory Commission. The Shipper's Declaration form included with the shipment states chemical form, physical state, and activity of SRM.
	7		The SRM is a tobacco or tobacco product, wood, or wood product which is exempted by paragraph (b) (5) (ii) and (iii) of section 1910.1200 of title 29 of the Code of Federal Regulations from the provisions of that section.

If we can be of assistance to you in regard to this matter, or any issue related to SRMs, please do not hesitate to write to me.

Sincerely,

Stanley D. Rasberry Chief

Office of Standard Reference Materials

PROJECT Pu - 242

Signed

NOTEDOOK NO. WI I Continued From Page ____

INITIAL STANDARD DILUTION RECORD

	Standard In	formation:	
Isotope: Pu	1-242	Vendor:	NIST
Activity of Standard Received:	uCi	Vendor I.D. #	SKH 4334 E
Weight of Standard Received (g): 5	.8 a	LAL I.D. #:	-A 6 5292 Chapages
7/2.70 mg/standard Activity (pCi/g): 1-18-95/58	2-2-pCi/g	NIST Traceable ?	yes
Halflife in Years or Days: 3.733	3±/0 ⁵ yrs	Certificate #:	SRH 4334E
Reference Date: 12	-18-1989	Receiver's Name:	K. Tree
		Date Received:	
		,	

Primary	Dilution en la companyation
Balance Verification?:	yes
Diluent Used:	5 H HN03
a: Decay Corrected Standard Activity (pCi/g):	712.70 pci/g
b: Weight of the Source Transferred (g):	5.5997
c: Total diluted weight (g):	<u>578.44</u> • -
d: Total Diluted Volume (mL)	500 mL
e: Activity of Dilution by Weight (pCi/g) [a * b / c]:	6.90 pCi/g
f: Calculated Density of Solution (g/ml) [c / d]: [-18-95	AW 1.16-1.157 g/mL
p: Activity of Dilution by Volume (pCi/mL) [e * f]:	7.98 pCi/mL
n. Dilution Logbook I.D. #:	94-677-27-1
Prepared By: 1 Janes Wmx	Preparation Date: 1-18-95
Reviewed By: De Htolyn	Review Date: 2/3/95
Purity/Cross Check Performed By: Tayur Will	Check Date: 2-1-95
	162

Date

Signed

Date

JAL SANDED

WORK GROUP REPORT (wk02)

May 22 1995, 12:20 pm

Work Group: SR-90 LAL-0196_23179 for Department: 12 Radiation Prep.

Created: 22-MAY-95

Due: 22-MAY-95

Operator:

Matrix Stat UA Workdate PR Location DUP L4482-B S SR-90 LAL-0196
LCS Lab Ctrt Sample S SR-90 LAL-0196
MB Method Blank S SR-90 LAL-0196
Bechtel Hanford, Inc. B0FKH6 S SR-90 LAL-0196 231790UP1." Water Water 156CART-2 Connents: TEMP 2 "GAMMA SPEC TO INCLUDE Cs137, Co-60, Ru-106" 1472 L4482-8

LOCKHEED ANALYTICAL LABORATORY

SAMPLE PREPARATION LOG FOR STRONTIUM ANALYSIS TOTAL RADIOSTRONTIUM - LAL-91-SOP-0196

Date Prep Started: (2.7.95 Matrix: Water WorkGroup: SR-90 LAL-0196 23179 Prep Due Date: 05/22/95 CUSTOMER PARENT NO QC CHILD ALIQUOT PLANCHET YTTRIUM YTTRIUM PLANCHET RESIDUE COMMENTS ID : LAL ID LAL VOLUME CARRIER SEP SEP TARE WT GROSS WT WEIGHT planchet gross wt. 6.89978 (a) (mLi DATE TIME (grams) (ttrama) (grams) L4482-8 23179DUP1 1 23179-01 500 me 0.5 1450 10.88725 L.9.46 69009k Lab Ctrl Sample 23179LCS1 ر 23179-02 ا 500 me 1450 4.57138 10.9.95 1-58479 Method Blank 23179MBB MBB1 23179-03 500 me 1450 10:47262 6.9.95 6.45935 6.47064 BOFKH6 L4482-8 23179-04 563 me 1450 6.56199 6.9.95 6.54837 8 9 12 13 14 15 17 18 19 20 23 Conc&Vol of Carrier 0.01231 0 ACT & VOI of LCS 42-90 24.78 stilled for 0.50 Prep Agist Carrier Exp Date 1-5-96 LCS Ref Date A QU- 177- 44-1 Start Lat Carrier ID# #94-658-4-1 LCS ID# Count At st Balance Number: 4002002 14 Pipette Number: 288756 Carrier and LCS add by: 115364 Witnessed by: SY 10-7-95 The samples were wet asked under the treat Comments: the excess organic materials. 6.9.95 They were wet asker to the Checked by:

They were dried, they were dried, they were

LOCKHEED ANALYTICAL LABORATORY

SAMPLE PREPARATION LOG FOR STRONTIUM ANALYSIS TOTAL RADIOSTRONTIUM - LAL-91-SOP-0196

Date Prep Started :													
WorkGroup:	SR-90 LAL-0)196	2317	9						Prep Due Da	te :	05/22/95	
CUSTOMER ID			QC		ALIQUOT VOLUME	SR CARRIER	YTTRIUM SEP	YTTRIUM SEP	PLANCHET TARE WT	PLANCHET GROSS WT		MESIDUE WEIGHT	COMMENTS
		2000 2000 50 600 50 600			(0)	(mL)	DATE	TIME	(grame)	(grama)	3	(grame)	
.4482-8	23179DUP1	. 1	DUP1	23179-01	0.5000		06/09/95		6.88725	6.89978		0.01253	
ab Ctrl Sample	23179LCS1	2	LCS1	23179-02	0.5000	0.5	06/09/95	14:50	6.57138	6.58424		0.01286	
Method Blank	23179MBB	∴3.	MBB	23179-03	0.5000	0.5	06/09/95	14:50	6.45935	6.47064		0.01129	-
30FKH6	L4482-8	- 4	SMP	23179-04	0.5000		06/09/95		6.54837	6.56114		0.01277	
		5			~	-							
•		6											
		7											·
	•	8				-							
		9								* .	Π	i	-
		10											
		11											
		12											
1		13									Π		
		14							4				
-		15									1		· · · · · · · · · · · · · · · · · · ·
		16										-	
		17		-									
_		18									一	. `	
		19									1		
		20											
		21									Г		
1 . 4		22	-									i	
		23	·								⇈		
		24									Г		
onc&Vol of Carrier	24.62 mg/m	nL; C	.5 mL		Act & Vol	of LCS	26.7	8 pCi/mL:	1.0 mL		Pre	p Anist	GA
arrier Exp Date	05-Ja			1	LCS Ref D			01-Apr-		1	_	rt Date	06/07/95
Carrier ID#	94-65	B-4-	ĺ	1	LCS ID#			94-677-4				unt Anist	CS
Balance Number :	40020021			()		Number :			()	Carrier and		S added by:	
				()	•		115364	·· ····	()			nessed by :	
Comments:	-			•									

Checked by:

V95136

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory-Las Vegas Nuclear Radiation Assessment Division

Calibration Certificate

,	
Description	Frencipal redenuciate Strontium-90 Hall-life 28.6 years
	Nominal activity 27 nano curies
	Nominal volume 5 mt in ampoule/bottle number 94003-1
Measurement	Activity of principal radionuclide
	Activity per gram of this solution
	5.40 nano corres of Strontium-90
	at 0400 hours PST on April 1, 1994
	Activity of daughter radionuclide
	The principal activity was accompanied at the quoted time by
	5.40 nanocuries Per gram
	of the daughter mustide Yttrium-90
	Total mass of this solution
	Approximately 5.0 *****
	Method of measurement
	The activity of the primary solution was measured by liquid scintillation counting.
	The activity of the dilution was measured by liquid scintillation counting.
	·

Useful Life	This redienuclide has decayed through	0.0	half lives since it was obtained by EMSL-LV	
·	We recommend that this solution should	not be used att	August 1994	

This dilution was prepared for the 1994 ASTM Collaborative Study of a test method for the determination of Sr-90 in water.

Purity	urity The manufacturer states that activities other than that of the principal nuclide and of its daughter nuclides, if any, were estimated/known to be:				
	(1)	less than % of the principal activity			
	(2)	fess than % of the principal activity			
	(3)	less than % of the principal activity			
	The activity of impurity (1) is not (2) is not (3) included in the quoted figures of the principal				
Random Errors					
	The precision of this standard was such tha				
	concentration of the principal activity had a				
	for the degree of freedom (n-1)).	(sm) where t is obtained from the student t factor			
	known uncertainty of the standard) is obtain	isable systematic errors (dilution, counting, and ned by the separate arithmetic summation of the $-\delta$ '). These have been estimated not to exceed			
	the quoted result from the true value. It is confidence limits and the worst case estim The overall uncertainty is therefore calcula	cy) is an estimate of the possible divergence of a combination of random error $[t(sm)]$ at the 99.7% ate of the systematic errors $(+\delta_+ - \delta')$ ted on the basis of $+ [t(sm) + \delta]_+ - [t(sm) + \delta']$ uoted radioactive concentration.			
Decay Schemes	daughter nuclides and impurities (no allow	ing assumptions of the principle nuclide, its ance for error in these assumptions or the included in the statement of accuracy above).			
		ercent by beta emission to lso decays 100 percent by			
Chemical	Carrier content per gram of solution:	Other components:			
Composition of Solution	30 micrograms strontium	0.1 <u>M</u> HC1			
,	Preservative:				
Remarks	· · · · · · · · · · · · · · · · · · ·	,			

Date Certificate Prepared

Approval Signature

Parl 26, 1994

Parl B. Hahn

Notebook No. <u>DU74</u>
Continued From Page

Date

INITIAL STANDARD DILUTION RECORD

	Standard In	iformation:	
lsotope:	Sr-90	Vendor:	EPA
Activity of Standard Received:	2.7×104 uci	Vendor I.D. #	94003-1
Weight of Standard Received (g)	. 5.0 s	LAL I.D. #:	AC5281
Standard Activity (pCi/g):	5.4 x 103 pCi/g	NIST Traceable ?	ijes
Halflife in Years or Days:	28.6 yrs	Certificate #:	94003-1
Reference Date:	4-1-1994	Receiver's Name:	K. Free
	,	Date Received:	5-3-94
•			
	Primary	Dilution	
Ralance Verification?:		405	

Primary	Dilution
Balance Verification?:	Yes
Diluent Used:	0. M tC
a: Decay Corrected Standard Activity (pCi/g):	5.4 x 10 3 pCi/g
b: Weight of the Source Transferred (g):	4.9670 0
c: Total diluted weight (g):	49.91
d: Total Diluted Volume (mL)	50 mL
e: Activity of Dilution by Weight (pCi/g) [a * b / c]:	537.4 pci/g
f: Calculated Density of Solution (g/ml) [c / d]:	0.9982 g/mL
g: Activity of Dilut ion by Vo lume (pCi/mL) [e * f]:	536.44 pCi/mL
h. Dilution Logbook I.D. #:	-93-474-81-1-82-1
Prepared By: James Won	Preparation Date: 6-15-94
Reviewed By: Ose Hitchism	Review Date: 6/30/94
Purity/Cross Check Rerformed By:	Check Date:
more dialogs	171
Mhandal	$\mu = 1.71$

Signed

Date

Signed

Signed

Notebook No.	
Continued From Page	<u>. </u>

Date

SECONDARY/WORKING LEVEL STANDARD DILUTION RECORD

Dilution Source Information					
Isotope: Ref. 4-1-94 Parent Barcode Number Vendor or Certificate I.D. # of Parent Standard: Diluted Source Logbook I.D. #:	Sr-90 AC5281 EPA 94003 - 1 93-474 -82-1				
Balance Verification?: Diluent Used:	1.1 MHCI				
0.000					

	Dilution
	Oliditoli
*Diluent:	O.IM HCI
*Density of diluent (g/ml):	N/A
a: Parent Specific Activity:	536.44 pCi/mls
b: Amount of Source Transferred:	5.0018 0
c: Total amount of Dilution:	100·20 g
d: Total Volume of Dilution:	N/A
e: Activity of Dilution [a * b / c]:	N/A
f: Activity of Dilution (a * b / d):	26.78 pG/ml
Dilution Logbook I.D. #:	94-677-44-1
Prepared By: Types Wong	Preparation Date: 3-2-95
Reviewed By:	Review Date: <u>3/3/95</u>
If the diluent remains unchanged from the diluent used	for the dilution source, then a weight dilution of a volume unit source
	diluent changes, a weighted proportion density conversion is necessary.

Date

Strontium Carrier Standardization

Strontium Carrier (10 mg/mL):

Use commercially available 10,000 μ g Sr/mL ICP Standard or equivalent. Alternately, Dissolve 24.16 g of Sr(NO₃)₂ in water and dilute to 1 L in a volumetric flask with water.

Perform calibration check on a 0.5 mL pipet and then carefully pipet 3 - 0.5 mL portions of the strontium carrier solution into separate cleaned dried and tared planchets. Dry the planchet under a drying lamp. Cool the planchets in a desiccator and weigh. $S_{\rm F}$ (which $\pm 91-20$ for ± 100 me with the strong terms of the planchets in a desiccator and weigh.

Sr Canier #91-208-100-) Was recalibrated to give a new calibrated value. Prepred M

- give	Calib # 1	Calib # 2	Calib # 3
Carrier plus planchet wt.	6.60823	6.65050	6-818936 Aw
Tare wt. of planchet	6.59582	6.63805	6.8688
Net wt. of carrier added (mg)	0.01241	0.01245	0.012068

AVERAGE Sr(NO₃)₂ ± STD DEV. = 0.01231 q

Expected mg of $Sr(NO_3)_2 = cert.value(=10 mgofSr/mL) * 0.5 mL * 2.41$

Within 3% of expected (12.08 mg/0.5 mL) value (yes/no) ______

Initial and Date: 10 - 10 - 95

Read and Understood By

Soln Dergo

Signed

Date

Signed

Date ! / .

100. PROJECT <u>Sr Cavier</u> Sy	landardization	Notebook No								
			Fre							
	Strontium Carrie	r Standardization	J. C.							
Strontium Carrier (10	mg/mL):	•	\\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-							
Use commercially available Dissolve 24.16 g of Swater.	Use commercially available 10,000 µg Sr/mL ICP Standard or equivalent. Alternately, Dissolve 24.16 g of Sr(NO ₃) ₂ in water and dilute to 1 L in a volumetric flask with water.									
portions of the stron	Perform calibration check on a 0.5 mL pipet and then carefully pipet 3 - 0.5 mL portions of the strontium carrier solution into separate cleaned dried and tared planchets. Dry the planchet under a drying lamp. Cool the planchets in a desiccator and weigh.									
	Calib # 1	Calib # 2	Calib # 3							
Carrier plus planchet wt.	6.58185g	6.49626g	6.56816g							
Tare wt. of planchet	6.56968 g	6.48464 q	6.55620 g							
Net wt. of carrier added (mg)	0.012179	0.01162	0.01196 g-							
AVERAGE Sr(NO ₃) ₂ ±	STD DEV. =	·01192g + 0	0.000277							
Expected mg of Sr	$(NO_3)_2 = cert.va$	lue(≈10mgofSr/mL)	* 0.5 mL * 2.41							
Within 3% of expec	ted (12.08 mg/0.5	mL) value (yes/no) _	yes							
Initial and Date: (20) 3-6-94										
· ·		• .								
			Continued on Page							
Danes Wory	Re 3-15-94	ad and Understood By QA Man Med Zin Signed	keview: 174 e. 8/4/94							

Мау 22 1995, ·10:36 ап

David-

Work Group: TC-99 LAL-0169_23139 for Department: 12 Radiation Prep.

Created: 22-MAY-95 Due: 22-MAY-95 Operator:

80,000 S. C. S.	231390UP1 231390UP2 231390UP2 23139(LCS1 23139(HBB1 L4.67:-6 L4.62:-17	Comments: L4467-6 L4482-17			
~	DUP LCS Bechtel Bechtel	an and a committee with the committee was	1. TO	er commencer of the contract o	
	Hanford,	TeMp			·
	ine.	2; SAF#			
	14467-6 14482-17 Lab Ctrl Sample Method Blank BOFRKS BOFKH6	SAF# 895-050			
Albhaye Bears	ωωωωωω				
	Page 1 1 C-99 IAL-0169 1 C-99 IAL-0169 1 C-99 IAL-0169 1 C-99 IAL-0169 1 C-99 IAL-0169 1 C-99 IAL-0169				
ophysiosis;	Water Water Water Water Water				
	99999		•		
***************************************	ccccc				
-	22-MY-95 22-MY-95 22-MY-95 22-MY-95 10-JUN-95				
-	156CART -2 156CART -2	•			.)

Page 1

RADIATION RESULTS CHECK REPORT

Workgroup Number: TC-99 LAL-0169_23139

Sample	Parameter (Marketer)	Vetue	Error	MDA
231390UP1	Tc-99 -	50.5695	9.28753	6.1273
231390UPZ	Tc-99	2019.27	163.314	6.4628
23139LC\$1	Tc-99	843.997	70.9788	5.54817
23139MBB1	Tc-99	-1.23359	4.8096	6.17396
L4467-6	Tc-99	45.3828	8.78159	6.03677
L4482-17	Tc-99	1562.34	128.392	7.1227

LOCKHEED ANALYTICAL LABORATORY

SAMPLE PREPARATION WORKSHEET FOR To-99 ANALYSIS LAL-94-SOP-0169

15 PCIL ROL

Prep Start Date: Matrix: Water WorkGroup: TC-99 LAL-0169 23139 Prep Due Date: 22-May-95 PARENT NO QC VIAL CUSTOMER COMMENTS FLASK FLASK WET SOIL ALIQUOT FLASK DRY SOIL ID. LAL ID LAL ID +WET SOIL EMPTY NET WT. +DRY SOIL NET WT. VOLUME (grams) (grama) (arems) (oratha) (grame) la or U 23139DUP1 1 L4467-6 23139-01 ISOML 23139DUP1 1a 23139-02 L4482-17 23139DUP2 2 23139-03 23139DUP2 28 23139-04 Lab Ctrl Sample 23139LCS1 3% 23139-05 23139LCS1 3a 23139-06 Method Blank 23139MBB 4 23139-07 23139MBB 4a 23139-08 BOFBK3 L4467-6 23139-09 150mL 5a 14467-6 23139-10 B0FKH6 L4482-17 23139-11 L4482-17 6a 23139-12 8 8a 9 9a 10 10a 11 11a 12 12a 9816.37 Act & Vol of LCS 111.90 Pai/ml Conc&Vol of Tracer Palmil O.ImL 1- on L Prep Analyst Tracer Ref Date 11-1982 LCS Ref Date Start Date 5/26/95 10-36-91 Tc-99 Tracer ID# 94-677-17-Tc-99 LCS ID# 93-474-96-1 Count Analyst 15 Balance Number: 4020021 Pipette: #120697 o.lml (1) Carrier and LCS added by: DA boml 11 Witnessed by: 119510 Comments: Cocktail - Packard Insta-Gel; vial - 20 mL poly. V95045

LOCKHEED ANALYTICAL LABORATORY

SAMPLE PREPARATION WORKSHEET FOR T_c-99 ANALYSIS LAL-94-SOP-0169

Prep Start Date : 5/26/95

Matrix : Water

WorkGroup: TC-99 LAL-0169 23139

Prep Due Date: 22-May-95

CUSTOMER	PARENT		QC	WIAL"	FLASK	FLASK	WET SOIL	FLASK	DRY SOIL		ALIQUOT	COMMENTS
ID 🗼	LALID			LALID	+WET SOIL	EMPTY	NET WT.	+DRY SOIL	NET WT.	300 00000 000 00000	VOLUME	
			Telegrands Environmental		(grems)	(grams)	(grems)	(grams)	(grame)	1,330,600	(L)	
-4467-6	23139DUP1	1	DUP1	23139-01							0.1500	
	23139DUP1			23139-02							0.1500	
L4482-17	23139DUP2	2	DUP2	23139-03							0.1500	
	23139DUP2	2a		23139-04							0.1500	
Lab Ctrl Sample	23139LCS1		LCS1	23139-05							0.1500	
*	23139LCS1	3a		23139-06							0.1500	
Method Blank	23139MBB		MBB1	23139-07							0.1500	
	23139MBB	4a		23139-08							0.1500	
BOFBK3	L4467-6	5	SMP1	23139-09						<u> </u>	0.1500	-
	L4467-6	5a		23139-10							0.1500	
BOFKH6 ·	L4482-17	6	SMP2	23139-11							0.1500	-
	L4482-17	6a		23139-12							0.1500	
		7	-									
		7a								l		
		8										
		8a								Ī	,	
		9 :								1		·
		9a										
		10									-	
		10a	1									
		11	٠.								-	1
1 1.4		11a										
		12										
		128	3	•					·			
Conc&Vol of Tracer	9816.3	37 m	g/mL; ().1 mL	Act & Vo	of LCS	111.9	0 pCi/mL;	1.0 mL	Prep	Analyst	DA
Tracer Ref Date	01-N				LCS Ref I	Date	01-S	ep-91		Start	Date	5/26/95
Tc-99 Tracer ID#	94-67	7-17	-1		Tc-99 LC	S ID#	93-47	4-96-1			t Analyst	CS
Balance Number :	40020021			_()	Pipette :	120697		()	Car	rier and	I LCS added by:	DA
				()		119510		()			Witnessed by:	RS
Comments:	Cocktail - Pa	acka	rd Insta	- -Gel; vial - :	20 mL poly	/.		-				•

Comments: Cocktail - Packard Insta-Gel; vial - 20 mL poly

V95045

Analyst: L. Schlosslin for DA 5-131/95

Checked by:

NAUVIC THIS IS A PHOTOCOPY OF THE CERTIFICA REC'D 3/29/ WHICH IS BEING MAILED TO YOU UNDER

SEPARATE COVER.

National Bureau of Standards

Certificate

Standard Reference Material 4288

Radioactivity Standard

Radionuclide Technetium-99

4288-83 Source identification

Source description Liquid in NBS borosilicate-glass

ampoule

Solution composition 59.31 μ g of Tc(VII) as potassium

pertechnetate per gram of approximately 0.001 molar KOH (1)*

4.910 Mass grams

 $3.759 \times 10^4 \text{ Bg g}^{-1}$ Radioactivity concentration

> Reference time November, 1982

Measuring instrument Liquid-scintillation counter (2)

0.27 percent (3) Random uncertainty

1.35 percent (4) Systematic uncertainty

Total uncertainty 1.62 percent (Random plus systematic)

None observed (5) Photon-emitting impurities

> $(2.111 \pm 0.036) \times 10^5 \text{ years}$ (6) Half life

This Standard Reference Material was prepared in the Center for Radiation Research, Nuclear Radiation Division, Radioactivity Group, Dale D. Hoppes, Group Leader.

Washington, D.C. 20234 November, 1982

George A. Uriano, Chief Office of Standard Reference Materials

FOOTNOTES

- (1) The KTcO₄ was prepared by M.W. Heitzmann of the U.S. Food and Drug Administration from NH₄TcO₄ obtained from Oak Ridge National Laboratory. The solution density is 0.998 g cm⁻³ at 21.8°C, and the KTcO₄ concentration is 0.00060 molar. The UV spectrum of this material exhibited only the characteristic doublets at 243 and 287 nm (A).
- Two liquid-scintillation counters were calibrated using the method of J.A.B. Gibson (B,C,D). Three different radionuclides were used as the standard: ³H, ¹⁴C, and ⁶⁰Co. The results obtained using the three radionuclides agreed to within 0.32 percent. The ¹⁴C result was used for confirmation only. The value given here is the unweighted mean of the ³H and ⁶⁰Co results.
- (3) Half the 99-percent confidence interval for the average of the ³H result and the ⁶⁰Co result. The standard deviation of the mean of the ³H result is 0.15 percent based on 6 degrees of freedom, and the standard deviation of the mean of the ⁶⁰Co result is 0.09 percent based on 9 degrees of freedom.
- (4) The systematic uncertainty is the average of that for the ³H result, 1.20 percent, and that for the ⁶⁰Co result, 1.49 percent. These values are linear sums of estimated upper limits of uncertainties due to the following:

	3 _H	60 _{Co}
 a) reference material for standard radionuclide 	0.63	0.68
b) source preparation	0.07	0.17
c) theoretical model	0.30	0.20
d) gamma-ray contribution to beta-particle detector		0.24
e) quenching	0.10	0.10
f) interpolation from calibration curve	0.10	0.10
	1.20	1.49

(5) The master solution from which these standards were prepared was examined with germanium gamma-ray spectrometers and no impurity was found. Limits of detection as a matio of gamma-ray-emission rate to technetium-99 activity are

 1×10^{-6} between 90 and 300 keV 1×10^{-7} between 300 and 1900 keV.

NBS-measured half life based on the formula $T_{1,} = N \ln(2)/A$, where N is the number of atoms, computed using an atomic mass for technetium-99 of 98.906254 \pm 0.000002 grams and the gravimetrically determined mass of technetium-99, and A is the activity determined by liquid-scintillation counting. The value recommended by the Oak Ridge Nuclear Data Project is (2.13 \pm 0.05) x 10⁵ years. (E)

^{*} References on last page

The following individuals and organizations contributed to the characterization of this Standard Reference Material.

J.A.B. Gibson
Atomic Energy Research Establishment
Environmental and Medical Sciences Division
Harwell
United Kingdom

M.W. Heitzmann
U.S. Food and Drug Administration
Division of Drug Chemistry
Washington, D.C.

J.C. Leak
U.S. Food and Drug Administration
Division of Oncology and
Radiopharmaceutical Drug Products
Rockville, MD

For further information please contact Dr. Bert M. Coursey at (301) 921-2383.

REFERENCES

- A. Boyd, G.E., J. Chem. Ed., 36, 3 (1959).
- B. Gale, H.J. and Gibson, J.A.B., Atomic Energy Research Establishment Report AERE-R5067 (1965), Harwell, United Kingdom.
- C. Gibson, J.A.B. and Marshall, M., Int. J. Appl. Radiat. Isotopes, 23, 321 (1972).
- D. Gibson, J.A.B., Computed counting efficiencies as a function of merit figure for 14 beta-particle-emitting radionuclides (July, 1980). Unpublished data.
- E. Kocher, D.C., Radioactive Decay Data Tables DOC/TIC-11026, p. 108 (1981). Available from NTIS, Springfield, VA.

ISOTOPE WEIGHT DILUTION RECORD

Isotope:	Vendor:	<u>ST</u>
Total Received Activity: 1.85 E 5 Bg		88.
	le <u>Y/N</u> Gert.#_	4288-83
Activity in Units/g: 3.759 X10 B8/9 X 60/2.22 = 1:016 E 6 Pc1/9 Activity converted (dpm/g): 4.988 X10 Cp. dpm/g	Reference Date:	Nov 1987 3-30-1992
Halflife (Yrs or days) t½ = 2.(1) & 5 Yrs •	Receiver's Name:	J. Mateles
PRIMARY DILUTION: Balance wt. c		,
a: Source activity: 1.016 & 6' PC1/9	(१५) dpm/g * (if t% = <1	OOyr decay to prep. date)
b: Wt. of Source transfered: 4.86 98	g	AA0128
Diluent used: 0,1 m NH40H		Dilated
c: Total diluted weight: 146.81	_ 0	•
d: Activity of dilution (a*b/c): 3.37 £ 4. PC	Zapmio ras	Onl = 99.563
e: Calculated density of solution: 9956	g/mL* www.ino.	• ,
f: Activity by volume = (d*e): 3.355 &4.	pcilanta,	National Institute of Standards and Technology Aloi25
Dilution Log Book ID: LAL: 92 - 353 - 100		Amount 3.759 x 10 ⁴ Bq z ⁻¹
Preparation Date: 6/6/93 Preparer's Name.	- would	Date November 1, 1982 SRM 4288 CAUTION
SECONDARY OR WORKING LEVEL DILUTION	Balance wt. check	RADIOACTIVE -
Log Book ID of source being diluted: Luc 92-353	-100-1	
a: Source activity: 3,355 & 4)	OOyr decay to prep. date)
b: Wt. of Source transfered: 2.321(
Diluent uset: 0.1 m NH+ OH		
c: Total dilusid weight: 71.89	_ 9	
d: Activity of dilution (a*b/c):	dpm/g	•
e: Calculated density of solution:	g/mL (4M HNO ₃	= 1.1294 ± .0007 g/mL)
f: Activity by volume = (d*e): 1083 pci/	ML dpm/mb (4)	
Dilution Log Book ID: LA1 92-353-100-2	-	
Preparer's Name:Preparation E	Date: 6/16/9	3
Reviewed By : Review Date:	6/16/93	189

SECONDARY/WORKING LEVEL STANDARD DILUTION RECORD

Dilution Sou	Dilution Source Information				
Isotope:	Tc-99				
Parent Barcode Number	AA0128				
Vendor or Certificate I.D. # of Parent Standard:	SRM 4288				
Diluted Source Logbook I.D. #:	92-353-(00-)				
Balance Verification?:	yes				
Diluent Used:	O. I. H. NH4OH				

	Dilution
*Diluent:	O.IH NHYOH
*Density of diluent (g/ml):	0.9956 g/ml
a: Parent Specific Activity:	3.355 E4 DEI/g PG:/ml
b: Amount of Source Transferred:	36.0938
c: Total amount of Dilution:	123·36 ·g
d: Total Volume of Dilution:	N/A
e: Activity of Dilution [a * b / c]:	/A pCi/g
f: Activity of Dilution (a * b / d):	98/6·37 pCi/ml
Dilution Logbook I.D. #:	94-671-17-1
Prepared By: The Won	Preparation Date: $11-16-94$
Reviewed By: De Hatchen	Review Date: 11/17/94
	used for the dilution source, then a weight dilution of a volume unit source f the diluent changes, a weighted proportion density conversion is necessary.

CERTIFICATE OF CALIBRATION BETA STANDARD SOLUTION

Radionuclide

Tc-99

Customer: LOCKHEED ENGINEERING & SCIENCES Co.

Half Life:

 $(2.13 \pm 0.05) \times 10^{-5}$ years

P.O.No.:

06LAB1036

Catalog No.:

7099

Reference Date:

September i 1991

12:00 PST.

Source No.:

389-22-1

Contained Radioactivity:

1.003

µСi.

Description of Solution

a. Mass of solution:

4.9929

OTRONA.

b. Chemical form:

NH4TcO4 in 0.1M NH4OH

c. Carrier content:

0.9974

None added

gram/ml @ 20°C.

d. Density:

Radioimpurities

None detected

Radioactive Daughters

None

Radionuclide Concentration

0.201

μCi/gram.

Method of Calibration

Weighed aliquots of the solution were assayed using a liquid scintillation counter.

Uncertainty of Measurement

a. Systematic uncertainty in instrument calibration:

±2.1%

b. Random uncertainty in assay:

±1.0%

c. Random uncertainty in weighing(s):

+0.0%

d. Total uncertainty at the 99% confidence level:

±3.1%

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Notes

- 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley.
- 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15)

QUALITY CONTROL

ISOTOPE PRODUCTS LABORATORIES

1800 No. Keystone Street., Burbank, California 91504

(818) 843 - 7000

191

14 A004 / ISOTOPE WEIGHT DILUTION RECORD

Isotope: Tc - 99	Vendor:
Total Received Activity: ~ [µ c i	Vendor ID: 3#9-22 - 1
Wt. Received: a 5 g NIST Traceable	N Cert. # implicitly
Activity in Units/g: -0.20/µCi/q	Reference Date: 9-1-91
Activity converted (dpm/g): dpm/g	Receive Date: 10-30-196
Halflife (Yrs or days) $t\% = \frac{2.13 \times 10^{-1} \text{ years}}{10^{-1} \text{ years}}$, ,,
PRIMARY DILUTION: Balance wt. cl	heck done (🛂).
a: Source activity: 2.01 x (0 p Ci / or	·
b: Wt. of Source transfered: 4.9320 g	g
Diluent used: 0.1 M NH40 H	
c: Total diluted weight 100 ml	_o- nw
d: Activity of dilution (a*b/c): N/A	dpm/g
e: Calculated density of solution: N/A	g/mL (4M HNO ₃ = 1.1294 ± .0007. g/mL)
f: Activity by volume = (d*e): 9910 pc /ml .	dpm/mL_fw
Dilution Log Book ID: 91-225-41-1	_
Preparation Date: 1-23-92 Preparer's Name.	oe Hutchinson
SECONDARY OR WORKING LEVEL DILUTION	Balance wt. check done ()
Log Book ID of source being diluted: 91-225-42-1	
a: Source activity: 9910 Pc:/mL	dpm/g * (if t% = <100yr decay to prep. date)
b: Wt. of Source transfered: 1.00513	<u>;</u> g
Diluent used: D. Im AH JOH	
c: Total diluted weight: 50.621	_9
d: Activity of dilution (a*b/c):	dpm/g
e: Calculated density of solution: 497 g/m.	g/mL (4M HNO ₃ = 1.1294 ± .0007 g/mL)
f: Activity by volume = Idee 196.8	ipm/mL
Dilution Log Book ID: 91-225-42-1	÷ -
Preparer's Names Toe Gutchwand Preparation D	Pate: 1-27-92 192
Reviewed By : Review Date:	6/8/93

SECONDARY / WORKING LEVEL STANDARD DILUTION RECORD

Dilution Source	a Information Company of the Author
Isotope:	Tc -99
From NIST traceable standard?:	Implicitly
Vendor or Certificate I.D. # of parent standard:	A A 00 4 7
Diluted source logbook I.D. #:	91-225-41-1
Balance verification?:	yes
Diluent used:	0.1M NIf401+

Dilut	lon
Diluent:	01 M NH40H
*Density of diluent (g/ml):	N/A
a. Parent standard activity:	99/0 pCi/ml
b. Amount of standard transferred:	Q.8759' q
c. Total amount of dilution:	254 69 01
d. Activity of dilution [a * b / c]:	111.90 Di/ml as of 9-1.
Dilution logbook I.D. #:	93-474 - 96-1
Prepared by: Janes Wong Reviewed by: De Hathan	Preparation date: 8-17-94 Review date: 8/25/94
If the diluent remains unchanged from the diluent used for the dilution source,	then a weight dilution of a volume unit source can be performed without a

LAL-91-SOP-0174

density conversion. If the diluent changes, a weighted proportion density conversion is necessary.

SECONDARY / WORKING LEVEL STANDARD DILUTION RECORD

Dilution Source	a Information (1) and (2) and (3)
Isotope:	Tc-99
From NIST traceable standard?:	Implicitly
Vendor or Certificate I.D. # of parent standard:	AA0047
Diluted source logbook I.D. #:	91-225 -41 -1
Balance verification?:	yes
Diluent used:	O.I. M. NHYOH

Dilu	ıtlon
*Diluent:	0.1 M NH40H
*Density of diluent (g/ml):	N/A
a. Parent standard activity:	99/0 pCi/ml
b. Amount of standard transferred:	1.9605 a
c. Total amount of dilution:	166.25 %
d. Activity of dilution [a * b / c]:	116.86 pci/ml as of 9-1-171)
Dilution logbook I.D. #:	93-474 - 97-1
Prepared by: The Wong Reviewed by: De Hilliam	Preparation date: 8-17-94
Reviewed by: Joe Hitchin	Review date: 8/25/54
U	· .
If the diluent remains unchanged from the diluent used for the dilution source density conversion. If the diluent changes, a weighted proportion density conversion.	e, then a weight dilution of a volume unit source can be performed without a average is necessary.

LAL-91-SOP-0174

Lockheed Analytical Laboratory

Sample Preparation Worksheet for Total Uranium (KPA) Analysis

Date Prep Started :		6/9	195	<u> </u>	•		Matrix:		
Workgroup Number :		A LA					rep Due Date:		195
CLIENT	LAL ID		QC	 Section 1. The page 178 of the Control of the Control	DILUTION	COMMENTS		Client	Collection
D				(ml., g. sample)					Date
L4482-8	23131DUP1		الهيبال	10~1		RPD=8.24 7.29. 6/2 /2 ons		DUP	05/22/95
Lab Ctrl Sample	23131LCS1		LCS			Pec = 102%		LCS	05/22/95
Method Blank	23131MBB1		M661			1. 2 0008		MB	05/22/95
L4482-8	23131MS1	£ 4	MSI		(5)	REC . 48% 6/1/ @ 5x 113%		MS	05/22/95
B0FKH6	L4482-8	- 5	SMPL	M551	V			Bechtel Hanford, Inc. *	05/09/95
•		6	7				-		
		7							
		8							
		9							-
		10				1 .		11	
+		11				11 1	2 + 100	16/16/12	93
		12			· · · · · · · · · · · · · · · · · · ·	Unito are 15/6		151 // //	2
		13					.		
	 	14							
		15							
	1	16				<u> </u>	. "		
		17	-						
		18							
	·	19		İ					
<u> </u>	1	20					·		
· · · · · · · · · · · · · · · · · · ·		21						· · · · · · · · · · · · · · · · · · ·	
: 14.		22							
		23		<u> </u>					
		24							
COMMENTS:	·			.	<u> </u>	•			
CCV4 100 vell	94 -67	7.5	3-1						
Amount of CCVL		4	n.L.	= 4/9/9/pmg	Amount of LC	S Intellogate -> 10 ml At	mount of MS	lal of 100 m/L ->	/sal
CCV Activity	5 mile	•			LCS Activity	10mll M	S Activity	love le	
CCV ID#	9101373	233/	4		LCS ID#			9101873353 (0) 9	50124 ·
Balance Number :	39 120015	LN	121	()	Pipette N	umber:	Tracer	, LCS, & MS added by:	DMB
•						1618222C (V)		Witnessed by :	
Sample Prep Analyst:	D.A	1.1	- 2	4/9/	9,7	- LAL-95-LOG-0711	Checked by:		
			8			3 159		0	

WORK GROUP REPORT (WK02)

May 22 1995, 04:42 pm

Toda.

Work Group: U TOTAL KPA LAL-0168_23131 for Department: 12 Radiation Prep.

Operator:

Created: 22-MAY-95 Due: 22-MAY-95

,5 <u></u>					and prof.	inspektion to below	lan i bir i hadi i dibibanya		energeführenblicher			
231310UP1 23131LCS1 23131MBB1	DUP LCS MB	-		L4482-8 Lab Ctrt Sample Method: Blank L4482-8 BOFKM6	S	Page 1 U TOTAL U TOTAL U TOTAL	KPA LAL-0168 KPA LAL-0168 KPA LAL-0168	Water Water Water	UIP U UIP U	22-HAY-95 22-MAY-95 22-HAY-95		
23131MS1 4482+8 Comments:	MS Bechtel	Hanford,	inc.	E4482-8 BOFKM6	S S	U TOTAL U TOTAL	KPA LAL-U168 KPA LAL-0168	Water Water	WIP U	22-MAY-95 10-JUN-95	156CART-2	
.4482-8		TEMP 2	#G/	NHAA SPEC TO INCLUDE (:s137,	Co-60, Ru	-106#			•		•
								•			,	
					i de Liverage							
						- 1500 BB (100 PM - 100 PM - 1						
					erige Historia							
ا ماد العدود با مراجع في المرافق الدور دور به الوالد دور الدور الدور ا					Serieda Virialisa Zukaba							
						1950 660 1820 880					•	
					100000							
					erregist State						••	
					papalah Marana	Tarihi da						
					is Till, * Sandar							
						California Services						
					nice i i Novem							
A Commence of the Commence of						a silikula perilika Tanbandan						
						ophranist Residen						
						e eje jeden e an jeden e						
	,											
								•				
					silyi Vilyi							

RADIATION RESULTS CHECK REPORT

Workgroup Mumber: U TOTAL KPA LAL-0168_23131

Sampi e	Perameter	Value	Error	HDA
23131DUP1	<u>Uranium</u>	3.08239	0.158985	0.201804
23131LCS1	Uranium	10.2079	0.527096	0.201804
23131MBB1	Uranium	. 0	0	0
23131HS1	Uranium	14.636	0.755089	1.00902
L4482-8	. Uranium	3.31059	0.170834	0.201804

D.M. Bage 6-12-015

Janes O

WORK GROUP REPORT (wk02)

May 22 1995, 12:24 pm

Work Group: TRITIUM(H3) LAL-0066_23181 for Department: 12 Radiation Prep.

Created: 22-MAY-95

Due: 22-MAY-95

Operator:

ta uditako-ekk			প্রস্তিত্বস্থানি প্রসূতি ১০০	io na elektrikania	the physical areas	**5	en en en en skilder anderen e	180° 180 HORSE		pocharchovania services de de		• •	
231810UPf 23181LCS1 23181M881 23181M81 L4482-16	DUP LCS MB MS Bechtel Ha	anford, Inc.	L4882-16 Lab Ctri Method E L4482-16 BUFKH6	Semple		STI STI STI STI	Page 1 RITIUM(H3) RITIUM(H3) RITIUM(H3) RITIUM(H3) RITIUM(H3)	LAL-0066 LAL-0066 LAL-0066 LAL-0066 LAL-0066	Water Water Water Water Water	UIP U UIP U UIP U UIP U UIP U	22-MAY-95 22-MAY-95 22-MAY-95 22-MAY-95 10-JUN-95	156-020	
CONTEST		TEUD 2											•
		enford, Inc.										•	
		:											

RADIATION RESULTS CHECK REPORT

Workgroup Number: TRITIUM(H3) LAL-0066_23181

Sample	Parameter	2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Value	Error	MDA
23181DUP1	H-3		264.866	206.758	256.357
23181LCS1	H-3		2666.84	394.29	256.143
23181MBB1	H-3		-107.663	160.892	251.668
23181MS1	H-3		3945.94	469.989	255.39
L4482-16	. н-3		358.866	217.242	257.829

LOCKHEED ANALYTICAL LABORATORY

SAMPLE PREPARATION WORKSHEET FOR H-3 ANALYSIS SOP-0066

Matriv · Water

Prep Start Date :	2 25 145	_		-							Matrix:	
WorkGroup:												22-May-9 <u>5</u>
CUSTOMER	PARENT	ИО	ac		FLASK	FLASK	WET SOIL	 A. J. A. M. 100 (1998). 	DRY SOIL	DISTILLED	ALIQUOT	COMMENTS
lD .	LALID	(¥3)		LALID	+ WET BOIL	EMPTY	NET WT.	+DRY SOIL	NET WT.	VOLUME	VOLUME	
					(grama)	(grams)	(grama)	(grama)	(grams)	(L)	43 (L)	
882-16	23181DUP1	1		23181-01							0,010	
b Ctrl Sample	23181LCS1	2		23181-02								
ethod Blank	23181MBB	3		23181-03								
4482-16	23181MS1	4		23181-04						0.05049		
OFKH6	L4482-16	5		23181-05								
		6								<u> </u>		
		7								<u> </u>		
		8				-						
		9								<u> </u>		<u> </u>
		10										
.*		11										
		12						-				
		13										
		14										
-		15										,
		16										
		17										
		18		1							•	
		19										-
		20										
		21										
		22										
ill		23										
		24		1								, , , ,
onc&Vol of MS	469dpm/	m(l r	nl	Conc & V LCS Ref I	of of LCS	34480	W/L	•	Prep Analy	st :	C.A. Schloesolin
S Ref Date	6-13-9	3		1	LCS Ref I	ate	6.3.6	92.		Start Date	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 25 195
-3 MS ID#	LAL-93-4		151	-	H-3 LCS I	D#	(AL-95-	-0721-5	1	Count Ana	lyst	9
Balance Number :				1/2	Pipette :	8220	×	N1	- t	MS and LCS	added by	: C.A.Schloesolin
	-100-0-0			-()	•	400		M				DA 5/20/90
Commente :	Cocktail - Pa	ackar	rd Liltin	⊶ na Gold XR:	vial - 20 n			_			•	
									***************************************			V95
A 1 4	Chry	0	$\sum_{\mathbf{A}}$	la Cara a	5	D25196	<u> </u>	_C ኑ	acked by	: THE		100
Analyst	CUM	<u> </u>	· Mr	MULUULU L		1627 1	ر	GII	ecven na			_

V95118

LOCKHEED ANALYTICAL LABORATORY

SAMPLE PREPARATION WORKSHEET FOR H-3 ANALYSIS SOP-0066

Prep Start Date: 5/22/95

Matrix: Water

WorkGroup: TRITIUM(H3) LAL-0066 23181

Prep Due Date: 22-May-95

	TRITIOMINS											22-1VIAY-33
CUSTOMER	PARENT				FLASK	FLASK	Secretary and the second sections	FLASK	1 - 2 - 100 Maria 4.40 (DISTILLED	[J. 266 97 022 *** - 4 c d.)	COMMENTS
ID.	British and the second			LAL ID	+ WET SOIL		1.5 ST 1.5 S	+DRY SOIL	- 1 Acc 2 2 2 2 2	VOLUME	VOLUME	
	A Something	Horr	-3456		(grams)	(grama)	(grams)	(grama)	(grams)			
	23181DUP1										0.01	
	 	_		23181-02							0.01	
Method Blank	23181MBB			23181-03							0.01	
_4482-16	23181MS1	****		23181-04		<u> </u>		i			0.01	1 mL MS added to
BOFKH6	L4482-16	5	SMP1	23181-05							0.01	50 mL MSS then
		6	<u> </u>								-	distilled.
		7							•			
	-	8										
		9	<u> </u>									
		10										-
		11										
		12										
ı		13		1								
		14		1								
	1	15						 				
		16	 								-	
		17	1				<u> </u>	<u> </u>			-	
		18		1								
		19										
		20	 	1								
	<u> </u>	21	<u> </u>	 						 		
4		22	 	1						<u> </u>		
i i j		23		 								
	<u> </u>	24		1								
Conc&Vol of MS	211,26 pCi/	1	1.0 ml		Conc & V	of of LCS	3.45	pCi/mL; 10).0 mL	Prep Analy		CAS
MS Ref Date				T	LCS Ref D			un-92	1	Start Date		5/22/95
1-3 MS ID#				1	H-3 LCS I			21-5-1	1	Count Ana		CS
Balance Number :			<u></u>	()	Pipette:		, 55 /	()	N	/IS and LCS		1
				-; (puu .	4055		-; ;	•		essed by :	

d by:

Analyst: 1. Schloensler In CAS 5/26/

(date entry)

Checked by:

CERTIFICATE OF ANALYSIS

Catalog Number:

PLU2-2X

Lot No. 4-27U

Element and Matrix:

U/HNO,/H,O Uranium Oxide

Starting Material:

U,O.

Starting Material Lot Number: 12921A

DC ARC: Trace Metallic Impurities in starting material via DC ARC [40 elements checked: only values detected are listed].

Element	PPM
Pb Cu	3-5 5-10
Ag	3-7

Traceability Documentation For Solution Standard:

1. Classical Wet Assay: 1,005 ppm.

Gravimetry: Evaporate to dryness, ignite and weigh as U.O..

- 2. Instrumentation Analysis By Inductively Coupled Plasma Spectrometer[ICP]: 998 ppm via NIST SRM 3164.
- 3. Balances are calibrated with NIST weight sets N.J. #92589 and #92550, according to NIST circular 547 3.4.3.

SPEX plasma solution standards are guaranteed stable and accurate to \pm 0.5% of labeled concentration for one year from date of shipment. This value is the sum of cumulative errors associated with analytical determinations, pipetting and diluting to final volume. For these solutions we use high purity acids, 18 megohm double delonzed water and triple rinsed bottles. All glassware used is class A.

· Kochedakote

Chemical Production Manager,

AUG 94 .

SECONDARY/WORKING LEVEL STANDARD DILUTION RECORD

Dilution Source Information			
(1-Natural	-		
NIA	- - !		
SPEX PLUZ-ZX Lot 4-27 CL	- -		
94-677-57-1	<u> </u>		
NIA	- -		
IN HNU3	<u>.</u>		
	(1-Natural NIA SPEX PLUZ-2X Lot 4-27 a 94-677-57-1 NIA		

	Dilution
*Diluent:	INITNOT Trace metal Gra Je
*Density of diluent (g/ml):	N/A g/ml
a: Parent Specific Activity:	10,000 as 12 TEHO Q1 5117145
b: Amount of Source Transferred:	IML 9 PIpet # 71008
c: Total amount of Dilution:	NIA g
d: Total Volume of Dilution:	100 ml
e: Activity of Dilution [a * b / c]:	100 ng/L pCi/g gd 5/17/9r
: Activity of Dilution (a * b / d):	100 - 29 1L gs 5/17/53
Dilution Logbook I.D. #:	94-677-58-1
	· · · · · · · · · · · · · · · · · · ·
Prepared By:	Preparation Date: 5/17/9's
Reviewed By:	Review Date: 12-6-18-95

Continued From Page

SECONDARY/WORKING LEVEL STANDARD DILUTION RECORD

Dilution Sou	rce Information
Isotope:	Uranian - Natural
Parent Barcode Number	NIA
Vendor or Certificate I.D. # of Parent Standard:	PL42-2× Lot 4-274 SPEX
Diluted Source Logbook I.D. #:	NIA
Balance Verification?:	NIA.
Diluent Used:	10 How, Trace me hal Grade

	Dilution
*Diluent:	1 M BNOS Truce me to 1 Gra Ja
*Density of diluent (g/ml):	ル/み g/ml
a: Parent Specific Activity:	511145 -DCilo Jus 1000 Ms/mL
b: Amount of Source Transferred:	Iml & pipet# 71008
c: Total amount of Dilution:	100-L-874511719r
d: Total Volume of Dilution:	100 ml Volumetric Flask
e: Activity of Dilution [a * b / c]:	pCi/g
f: Activity of Dilution (a * b / d):	10,000 -DEI/HH gd 5/17/52
Dilution Logbook I.D. #:	94-0677-57
Prepared By:	Preparation Date:
Reviewed By:	Review Date: 6-18-95
	sed for the dilution source, then a weight dilution of a volume unit source the diluent changes, a weighted proportion density conversion is necessary.

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material 3164

Spectrometric Standard Solution

Uranium

Batch Code 390709

This Standard Reference Material (SRM) is intended for use in atomic absorption spectrometry, optical emission (plasma) spectrometry, spectrophotometry, or any other analytical technique that requires aqueous standard solutions for calibrating instruments. SRM 3164 is a single element solution prepared gravimetrically to contain 10 mg/mL of uranium with a nitric acid concentration (V/V) of 10 percent. The certified value is based on a gravimetric procedure, i.e., weight per volume composition of the high-purity uranium oxide dissolved in NIST high-purity reagents. The uncertainty listed is based on gravimetric and volumetric uncertainties of the preparation and the effect of solvent transpiration through the container walls for one year after the bottle is removed from the plastic sleeve.

Metal	Concentration (mg/mL)	Source Purity, %	Acid Conc. (V/V) Approximate	
U	10.00 ± 0.03	NBL-CRM 129 (99.968%) (formerly SRM 950b)	HNO ₃ , 10%	

Procedures for Use

Stability: This certification is valid for one year from the date of shipment from NIST provided the solutions are kept tightly capped and stored under normal laboratory conditions. NIST will monitor the stability of representative solutions from this SRM lot and if changes occur that invalidate this certification, NIST will notify purchasers.

Preparation of Working Standard Solutions: All solutions should be brought to 22 ± 1 °C and all glass or plastic surfaces coming into contact with the standard must have been previously cleaned. A working standard solution can be prepared from the SRM solution by serial dilution. Dilutions should be made with certified volumetric class A flasks and 5 or 10 mL class A pipets. All volumetric transfers of solutions should be performed using a proven analytical technique. Each dilution should be acidified with an appropriate high-purity acid and diluted to calibrated volume using high-purity water. The stability of the working standard solution will depend on the final acid concentration; therefore, care should be exercised to ensure that the final acid concentration of the dilution closely approximates that of the SRM. To achieve the highest accuracy, the analyst should prepare daily working solutions from 100 μ g/mL dilutions of the original SRM solution.

SRM 3164 was prepared by T.A. Butler of the NIST Inorganic Analytical Research Division. Inductively coupled plasma emission spectrometric analyses were made by T.A. Butler and L.J. Wood.

The technical and support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the Standard Reference Materials Program by J.S. Kane.

Gaithersburg, MD 20899 October 5, 1993 Thomas E. Gills, Acting Chief Standard Reference Materials Program

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory-Las Vegas Nuclear Radiation Assessment Division

Calibration Certificate

Description	Principal redionuclide Tritium (H-3) Half-life 12.43 years
	Nominal activity 110 nano curies
	Nominal volume 5 ml in empoule/bottle number 2606-1
Measurement	Activity of principal radionuclide
	Activity per gram of this solution
	21.9 nano curies of Tritium
	at 0400 hours PSI on June 3, 1992
•	Activity of daughter radionuclide
	The principal activity was accompanied at the quoted time by
	curies Per gram
	of the daughter nuclide
	Total mass of this solution
	APPROX. 5.0
	Method of measurement '-
	The activity of the primary solution and this dilution were measured by liquid scintillation counting.
#1 12 12 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Counting efficiencies for both standardizations were determined by counting solutions directly traceable to the National Institute of Standards Technology (NIST).
Useful Life	This redienuclide has decayed through D . 0 half lives since it was obtained by EMSL-LV
	We recommend that this solution should not be used after December 1999

Purity	The manufacturer states that activities othe and of its daughter nuclides, if any, were es	
,	(1) none	less than % of the principal activity
	(2)	less than % of the principal activity
	(3)	less than % of the principal activity
	The activity of impurity (1) is not (2) is not (3 included in the quoted figures of the principal content of the principa	3) is not pal activity.
Random Errors		
	The precision of this standard was such t	hat the certified value of the radioactive
	concentration of the principal activity had	a standard error (sm) not greater than ± 0.4 %
	(The 99.7% confidence limits are given by for the degree of freedom (n-1)).	y t(sm) where t is obtained from the student t factor
	known uncertainty of the standard) is obt	essable systematic errors (dilution, counting, and ained by the separate arithmetic summation of the δ - δ '). These have been estimated not to exceed
	the quoted result from the true value. It confidence limits and the worst case esti The overall uncertainty is therefore calcu	racy) is an estimate of the possible divergence of is a combination of random error $[t(sm)]$ at the 99.7% mate of the systematic errors $(+\delta, -\delta')$ lated on the basis of $+[t(sm)+\delta], -[t(sm)+\delta']$ quoted radioactive concentration.
Decay Schemes	ecay Schemes This standardization is based on the following assumptions of the principle nuclide, its daughter nuclides and impurities (no allowance for error in these assumptions or the assumption of quoted half-life have been included in the statement of accuracy above).	
	Tritium decays 100 perce maximum energy is 18.6 K	nt by beta emission. The ev, the average is 5.68 Kev.
Chemical ^	Carrier content per gram of solution:	Other components:
	100 percent # 0	Barium less than 0.004 per
Composition of Solution	100 percent H ₂ O	Lead less than 3×10^{-5} perc

U.S. DEPARTMENT OF COMMERCE National Institute of Standards & Technology Gaithersburg, MD 20899

REPORT OF TRACEABILITY

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory Las Vegas, Nevada

Radionuclide

Hydrogen-3

Source identification

2606-1, prepared by EMSL

Source description

Liquid in 5-mL flame-sealed glass ampoule

Source mass .

Approximately 5.0 grams

Source composition

Hydrogen-3 in water

Reference time

0700 EST June 3, 1992

	NIST DATA	EMSL DATA
Radioactivity concentration	810.5 Bq g ⁻¹	810.3 Bq g ⁻¹
Expanded uncertainty	0.64 percent (1.2)*	4.3 percent (3)
Photon-emitting impurities	None observed (4)	None observed
Measuring instrument	4πβ liquid-scintillation counters calibrated with SRM 4926D	Liquid-scintillation counting
Half life	$12.43 \pm 0.05 \text{ years}^{(5)}$	
Difference from NIST		-0.05 percent (6)

For the Director,

mathetian.

J.M. Robin Hutchinson, Acting Group Leader Radioactivity Group Physics Laboratory

*Notes on next page

Gaithersburg, MD 20899 January 1994

NOTES

- The uncertainty analysis methodology and nomenclature used for the reported uncertainties are based on uniform NIST guidelines and are compatible with those adopted by the principal international metrology standardization bodies [cf., B.N. Taylor and C.E. Kuyatt, NIST Technical Note 1129 (1993)].
- The combined standard uncertainty, $u_e = 0.32$ percent, is the quadratic combination of the standard deviation (or standard deviation of the mean where appropriate), or approximations thereof, for the following component uncertainties:

a)	11 liquid-scintillation measurements on each of	
	4 vials	0.11 percent
b)	gravimetric	0.05 percent
c)	calibration of SRM 4926D	0.29 percent
d)	background	0.00 percent
e)	half life	0.03 percent

The expanded uncertainty, U = 0.64 percent, is obtained by multiplying u_e by a coverage factor of k = 2 and is assumed to provide an uncertainty interval of at least 95% confidence.

- Overall uncertainty reported by EMSL.
- (4) The limit of detection for photon-emitting impurities is:

 $0.08 \text{ y s}^{-1}\text{g}^{-1}$ for energies between 90 and 2700 keV.

- Unterseger, M.P., Coursey, B.M., Schima, F.J., and Mann, W.B., Int. J. Appl. Radiat. Isot., 31, 611 (1980).
- This result demonstrates the traceability of EMSL to NIST, for this measurement, to within five percent as specified in the appendix, <u>Traceability Studies</u>, of the EPA-NIST interagency agreement of April 1976, as amended.

For further information call Larry Lucas at 301-975-5546 or Jeffrey Cessna at 301-975-5539.

INITIAL STANDARD DILUTION RECORD

		tanuaro in	formation:	
sotope:	H-3	3	Vendor:	<u>EPA</u>
Activity of Standard Received:	. [{	uCi ·	Vendor I.D. # 5841	hs
Veight of Standard Received (g):	5	9	LAL I.D. #:	AC 5299
Standard Activity (pCi/g):	21.9	nC/s pCHAPSY	ッ/기 ^内 5 NIST Traceable 7	Yes
Halflife in Years or Days:	12.43	yrs	Certificate #:	<u> 26¢6-1</u>
Reference Date:	0400,6/	3/92	Receiver's Name:	Kavin Free
			Date Received:	1/25/95
		:		•
		0.	Dilution was a second	
ş	in in	Filliary L	Suggest was a second	127
Balance Verification?:			Yes	
594 Hand.		EPA	Distilled	Water (Dead Water)
Diluent Used:		<i>P11</i>	210 16:10	
:/ Decay Corrected Standard Activ	ity (pCi/g):		-4-9391-571	oci/o on 6/3/92
Weight of the Source Transferre	d (g):		4.939	9
:: Total diluted weight (g):				3
			50 49.5	mL.
Total Diluted Volume (mL)				
	pCi/g) [a ⁴	b/c]:	2190	pCi/g
		b /c]:		p/mL
Total Diluted Volume (mL) Calculated Density of Solution (g/	/mi) [c / d]:	• f]:	0.99777	

Signed

Purity/Cross Check Performed By:

Prepared By:

Reviewed By:

Date

CP5/8/95 Signed

Preparation Date:

Review Ďate:

Check Date:

2 2 **4**

PROJECT .

Notebook	A1 -	771
Notebook	NO.	100

			N	4-
Continue	ed From	Page	/	π

100	7	DARY/WORKING LEVEL DARD DILUTION RECORD
7	Di	Dilution Source Information
	Isotope:	H-3 LCS
_	Parent Barcode Number	AC5299
	Vendor or Certificate I.D. # of Parent St	Standard: 2605 - 1
	Diluted Source Logbook I.D. #:	LAL-95-0721-1
	Balance Verification?:	Yes
	Diluent Used:	Dop well water - low 1/3
		Dilution
	*Diluent:	Deepwell water - Low Hs
	*Density of diluent (g/ml):	<u>0・9</u> g/ml
	a: Parent Specific Activity:	Z194 pCi/g
	b: Amount of Source Transferred:	3 ⁶⁴⁷⁶ 5.0 g
	c: Total amount of Dilution:	g
	d: Total Volume of Dilution:	3176 ml
	e: Activity of Dilution [a * b / c]:	3.413 pCi/g
	f: Activity of Dilution (a * b / d):	3.448 pCi/mi = 3448 pCi/L
	Dilution Logbook I.D. #:	LAL-95-0721-5
	Prepared By: Q: C. M. L	Preparation Date: 4/14/95
	Reviewed By: De Htth	Preparation Date: 4/14/95 Review Date: 4/14/25
		It used for the dilution source, then a weight dilution of a volume unit source If the diluent changes, a weighted proportion density conversion is necessary.
	-	Read and Understood By (225 5/8/2)

Date

Signed

Signed

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory-Las Vegas Nuclear Radiation Assessment Division

Calibration Certificate

Description	Principal redionuclide Tritium (H-3) Half-life 12.43 years
	Naminal volume 5 mt in ampaule/bottle number 2548-1
Measurement	Activity of principal radionuclide
	Activity per gram of this solution 11.03 nano curies of Tritium et 0400 hours PST on August 10, 1989
	Activity of daughter radionuclide
	The principal activity was accompanied at the queted time by Curius Per gram of the daughter nuclide
	Total mass of this solution APPROX. 5.0 grams
	Method of measurement
	The activity of the primary solution and this dilution were measured by liquid scintillation counting.
	Efficiencies were measured by counting colutions prepared from the National standards & Technology.
Useful Life	This radianuclide has decayed through half lives since it was estained by EMSL-LV
,	We recommend that this solution should not be used after

•	•	•								
	Preservative:	2000								
Composition of Solution	100 percent H2O	Bari Lead	nm less than 0.002 pe less than 2x10 ⁻⁵ per							
Chemical	Cerrier content per gram of solution:	Other co	omponents:							
Decay Schemes	This standardization is based on the follow daughter nuclides and impurities (no allow assumption of quoted half-life have been Tritium decays 100 perce maximum energy is 18.6 K	vance for error in the included in the statem nt by beta em	se assumptions or the sent of accuracy above). tission. The							
	the overall uncertainty (often called accurate quoted result from the true value. It is confidence limits and the worst case estimate overall uncertainty is therefore calculant is $+4.1\%$. -4.1% of the	s a combination of rai nate of the systematic	ndom error [t(sm)] at the 99.7% : errors (+δ , -δ ') [t(sm) +δ] , - [t(sm) +δ ']							
	The maximum uncertainty due to the asseknown uncertainty of the standard) is obtained and negative systematic error (+ + 3.5% or - 3.5%	sined by the separate $\delta=\delta'$). These have	arithmetic summation of the been estimated not to exceed							
	(The 99.7% confidence limits are given by for the degree of freedom (n-1)).	t(sm) where t is obtain	ned from the student t factor							
	The precision of this standard was such the concentration of the principal activity had									
Random Errors										
	The activity of impurity (1) is not (2) is not (3) is not included in the quoted figures of the principal activity.									
	(3)	less than equal to	% of the principal activity							
•	(2)	less than equal to	% of the principal activity							
	(1) none	less than equal to	of the principal activity							

Date Certificate Prepared

August 29, 1989

Approval Signature

August 29, 1989

Approval Signature

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS GAITHERSBURG, MD 20899

REPORT OF TRACEABILITY

U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory Las Vegas, Nevada

Radionuclide Hydrogen-3

Source identification 2548-1, prepared by EMSL

Source description Liquid in 5-ml flame-sealed glass ampoule

Source mass Approximately 5.0 grams

Source composition Hydrogen-3 as HTO in water

Reference time 0700 EST, 10 August 1989

NIST DATA

419.4 Bq g⁻¹

1.08 percent^{(1)*}

None detected⁽³⁾

PMSL DATA

408.1 Bq g⁻¹

4.10 percent⁽²⁾

None reported

Beta-particle-emitting impurities None detected (3)

(Activities at reference time)

4wβ liquid-scintillation counter calibrated using NIST SEM 4927B

4πβ liquid-scintillaticounter

Half life

12.35 ± 0.01 years(4)

Difference from NIST

Radioactivity concentration

Overall uncertainty

Measuring instrument

-2.68 percent(5)

Gaithersburg, MD 20899 10 May 1990 Date D. Hoppes, Group Leader

Radioactivity Group

Center for Radiation Research

*Notes on next page

As guidance for the proper use of this Report, it should be emphasized that the National Bureau of Standards is concerned only with fostering good measurements capability and consistency with the national measurements system. The assurance of the proper application of that capability to the ultimate consumer products is the responsibility of each manufacturer of these products and of the Federal regulatory agencies.

A continuing traceability program in radioactivity demonstrates, to the degree established by the periodic assays of calibrated radioactivity samples, a continuing competence to maintain the instrument systems and standards necessary for accurate measurement. Such a program cannot, however, endorse each and every measurement nor the final product, any more than a spot check can vouch for every unchecked item. Care should be taken, therefore, not to imply such endorsement. The proper use of this Report is governed by section 200.114 of Title 15 of the Code of Federal Regulations. These regulations may be met if this Report, if quoted, is quoted in its entirety. Excerpts out of context may be misleading.

NOTES

(1) Individual uncertainties have the significance of one standard deviation of the mean, or an approximation thereof. The combined uncertainty is the individual uncertainties shown below added in quadrature. The overall uncertainty is taken to be three times the combined uncertainty.

Source of u	ncertainty	Uncertainty (Z)
a) beta-partic measurements	le-emission-rate s	0.05
b) gravimetric	measurements	0.20
c) deadtime		0.01
d) background		0.02
e) detection ef	fficiency	0.10
f) count-rate-v	vs-energy on to zero energy	0.10
g) half life		0.05
h) beta-particl	le-emitting impurities	0.10
Combined und	certainty	0.36
Overall unce	ertainty	* 3 1.08

- (2) Overall uncertainty reported by EMSL.
- (3) The limit of detection for beta-particle-emitting impurities is $0.4~\beta s^{-1}g^{-1}$ for energies greater than 20 keV.
- (4) NCRP Report No. 58, Second Edition (1985) p. 365.
- (5) This result demonstrates the traceability of EMSL to NIST, for this measurement, to within five percent as specified in the appendix.

 Traceability Studies, of the EPA-NIST interagency agreement of April 1976, as amended.

For further information call Larry Lucas at (301) 975-5546 or FTS 879-5546.

ISOTOPE WEIGHT DILUTION	ON RECORD Diluted
Isotope: 34	Vendor: EPA AA0022
Total Received Activity: 55.2 nanoCi	Vendor ID: 2548-1
	ible Y/N Cert. # implicitly baceabl
Activity in Units/g: 11.03 Kano Ci / g	Reference Date: 8-10 - 1989
Activity in Units/g: 11.03 Kano Ci / g Activity converted (dpm/g): 24486.6 dpm/g	Receive Date: 7-23-19
Halflife (Yrs or days) th = 12.43 year	Receiver's Name: 7-23-13 / A Jummy
PRIMARY DILUTION: Balance wt.	······································
a: Source activity: 24486.6	_ dpm/g * (if t% = <100yr decay to prep. date)
b: Wt. of Source transfered: 4.9376	8-10-199 decay corrected
Diluent used: EPA dead water	
c: Total diluted weight: 20.06	9·
d: Activity of dilution (a*b/c): 6027.17	dpm/g
e: Calculated density of solution: /- 00	g/mL (4M HNO ₂ = 1.1294 ± .0007 g/mL)
f: Activity by volume = (d*e): 6027-17 525	15 dpm/mL
Dilution Log Book ID: 93 - 0475 - 1 - 1	CAUTION RADIOACTIVE MATERI
Preparation Date: 6-18-93 Preparer's Name.	Hanes Wong AMT.
SECONDARY OR WORKING LEVEL DILUTION	Balance wt. check do: sevinon and property controls systems Lason are an area of the control of
Log Book ID of source being diluted:	·
a: Source activity:	_ dpm/g
b: Wt. of Source transfered:	g
Diluent usedi	•
c: Total diluted the little	g
d: Activity of dilution (a°b/c):	dpm/g
e: Calculated density of solution:	g/mL (4M HNO ₃ = 1.1294 ± .0007 g/mL)
f: Activity by volume = (d*e):	dpm/mL
Dilution Log Book ID:	·
Preparer's Name:Preparation	Date:
Reviewed By : Review Date	e: 231

ISOTOPE SECONDARY/WORKING LEVEL DII	LUTION RECORD
ISOTOPE: H-3 from NIST SOURCE, Y/N	O
Date: 9/17/93 Preparer's Name: 950000	Preparation of
Volumetric Gravimetric Method (Circle One)	Preparation of Matrix Spike
Pipet Check / Balance Wt. Check Done (*)	Sotution
Diluted Source ID (log#): 93-475-1-1	,
Diluent used: Deal Water if the diluent remains unchanged, to of a volume unit source can be density conversion.	
A: Source activity: 485 9.6 dpm/mL	Ref Octo 6-18-9
B: Amount of source transferred: 11.76079	_ used all remining 3
C: Total amount of dilution: 121.78 q	
D: Activity of dilution (A*B/C): 469 dom	fmc = 6-18-93
Dilution Log Book ID:	- ,
Reviewed by: <u>BW</u> Date: <u>7-17-93</u>	

DATA VALIDATION REPORT for 200-BP-5 GROUNDWATER ROUND 3 Radiochemistry Analysis SDG LK4482-LAS LATA VB403.73

P.O. Box 969
Richland, Washington

July 27, 1995

Table of Contents

Data Validation Narrative	000002
INTRODUCTION	
ANALYSES REQUESTED	000002
DATA QUALITY OBJECTIVES	
REFERENCES	000004
GLOSSARY OF VALIDATION APPLIED QUALIFIERS (RADIOCHEMISTRY)	000005
GLOSSARY OF LABORATORY APPLIED QUALIFIERS	000006
Qualification Summary Table	000007
Data Summary Table	000009
Sample Results	000011
Checklist	000015
Laboratory Case Narrative	000023
Chain-of-Custody Information	000026
Supplemental Information	000029
END OF PACKAGE	000031

200-BP-5 Groundwater Round 3 Data Validation Narrative

INTRODUCTION

All samples in Sample Delivery Group (SDG) LK4482-LAS (VB403.73) were validated at level C as defined in the Data Validation Procedures for Radiochemical Analyses (WHC-SD-EN-SPP-001, Rev. 1).

The analyses were performed by Lockheed Analytical Services.

ANALYSES REQUESTED

See Table 1.

DATA QUALITY OBJECTIVES

Precision: Goals for precision were met with the exception of those items

discussed in the "Qualification Summary Table".

Accuracy: Goals for accuracy were met.

Sample Result Verification: Not applicable to summary data packages that contain no raw data.

Detection Limits: Detection limit goals were met for all sample results as specified

in the Quality Assurance Program Plan for 200-BP-5 Groundwater Operable Unit, DOE/RL 88-32, Rev. 1. with the exception of those

items discussed in the "Qualification Summary Table".

Completeness: The data package was 100% complete for all requested analyses.

MAJOR DEFICIENCIES

No major deficiencies were identified during data validation which required qualification of data as unusable.

MINOR DEFICIENCIES

Minor deficiencies were identified during validation which required qualification of data as estimated. See the "Qualification Summary Table".

Table 1 Chain-of-Custody Analysis Request

LATA ID #: VB403.73

SDG: LK4482-LAS

	Sample Information							Α	nal	yse	s Re	qu	este	d	
SAMPLE	DATE			SAMPLING	FIELD QC	TEMP									
NO.	COLLECTED	MATRIX	SAF	LOCATION	INFO	°C	1	2	3	4	5	6	7	8	9
BOFKH6	9-May-95	WATER	B95-050	299-E33-12	SPLIT/B0FB90	2	X	X	X	X	X	X	X	Х	X

Method References:

	Analysis	Method
1.	Gross Alpha	LAL-91-SOP-0060
2.	Gross Beta	LAL-91-SOP-0060
3.	Plutonium-238, -239/40	LAL-91-SOP-0108
4.	Strontium-90	LAL-91-SOP-0196
5.	Gamma Spec (Cs-137, Co-60, Ru-106)	LAL-91-SOP-0063
6.	Total Uranium	LAL-91-SOP-0060
7.	Technetium-99	LAL-91-SOP-0169
8.	Tritium	LAL-91-SOP-0066
9.	Activity Scan	Lab Specific

NOTES: (complete documentation of these notes can be found in the Supplemental Information Section of this report) NOTE 1: The Rad Screen before shipment was deemed unnecessary.

REFERENCES

WHC 1993, Data Validation Procedures for Radiochemical Analyses, WHC-SD-EN-SPP-001, Rev. 1, Westinghouse Hanford Company, Richland, Washington.

DOE 1994, Quality Assurance Program Plan for 200-BP-5 Groundwater Operable Unit, DOE/RL 88-32, Rev. 1, Department of Energy-Hanford, Richland, Washington.

GLOSSARY OF VALIDATION APPLIED QUALIFIERS (RADIOCHEMISTRY)

Qualifiers which may be applied by data validators in compliance with the procedures herein are as follows.

- U- Indicates the constituent was analyzed for, but was not detected at a concentration above the Minimum Detectable Activity (MDA). The concentration reported is the sample result corrected for sample aliquot size, dilutino factors, and percent solids (in the case of solid matrices) by the laboratory. The associated data should be considered usable for decision making puposes.
- UJ- Indicates the constituent was analyzed for and was not detected at a concentration above the Minimum Detectable Activity (MDA). Due to a quality control deficiency identified during data validation, the result reported may not accurately reflect the sample concentration. The associated data should be considered usable for decision making purposes.
- J- Indicates a constituent was analyzed for and detected. The associated value is estimated due to a quality control deficiency identified during validation. The data should be considered usable for decision making purposes.
- R- Indicates the constituent was analyzed for and detected; however, due to an identified quality control deficiency the data should be considered unusable for decision making purposes.
- UR- Indicates the constituent was analyzed for and not detected; however, due to an identified quality control deficiency the data should be considered unusable for decision making purposes.

GLOSSARY OF LABORATORY APPLIED QUALIFIERS

Qualifiers which may be applied by the laboratory in compliance with applicable requirements are as follows.

Commonly used laboratory radiochemistry qualifiers:

- U- Indicates the analyte was analyzed for but not detected in the sample.
- J- Indicates the value reported is estimated due to the presence of interference.
- C- Indicates that the presence of high TDS in the sample required reduction of sample size which increased the MDA.

Qualification Summary Table

Qualification Summary Table

Radiochemistry

			1 1010111111111111111111111111111111111		
ANALYTE	TYPE	QUALIFIER	SAMPLES	DQO	REASON
			AFFECTED		
Technetium-99	MINOR	J	BOFKH6	PRECISION	Duplicate precision is outside
-		·			acceptance criteria.

Comments:

- 1. A matrix spike for the Technetium-99 procedure was not performed due to lack of sample. No qualification is necessary.
- 2. The "U" qualifers added to the Data Summary Tables and Form Is are laboratory concentration qualifiers to indicate that the results are <MDA and have not been applied due to a validation deficiency.
- 3. The MDA was greater than RDL for the uranium-total analysis of sample B0FKH6. No qualification is necessary.

Radiochemistry Field QC

		,	aivoi		
ANALYTE	TYPE	QUALIFIER FIELD Q		DQO	ASSESSMENT
			SAMPLES	<u> </u>	
Gross Beta	FIELD SPLIT QC	NONE	BOFKH6/BOFB90	PRECISION	Field split precision is unacceptable.

Comments:

1. Data qualification is not required based on field split precision, however field split results are noted here to alert the data user to uncertainties in the data set during decision making processes.

Data Summary Table

RADIOCHEMISTRY DATA SUMMARY TABLE

LATA ID#:	HEIS#:	B0FKI	16	
	Date:	9-May-	95	
.		Matrix:	WATE	R
Constituent	CAS#	Units	Results	Q
Technetium-99	14133-76-7	pCi/L	1560	J_{i}
Tritium	10028-17-8	pCi/L	. 360	
Gross Alpha	ALPHA	pCi/L	2.8	C
Gross Beta	BETA	pCi/L	883	
Plutonium-238	13981-16-3	pCi/L	-0.035	U
Plutonium-239/240	PU-239/240	pCi/L	0.05	U
Total Strontium-90	10098-97-2	pCi/L	-0.21	U
Uranium-total	7440-61-1	μg/L	3.31	
GAMMA-SCAN				
Actinum-228 (Ra-228)	15262-20-1	pCi/L	9	U
Cesium-137	10045-97-3	pCi/L	-7.2	U
Cobalt-58	13981-38-9	pCi/L	2.7	U
Cobalt-60	10198-40-0	pCi/L	24.4	
Europium-152	14683-23-9	pCi/L	-13	U
Europium-154	15585-10-1	pCi/L	-3	U
Europium-155	14391-16-3	pCi/L	-2.6	U
Iron-59	14596-12-4	pCi/L	1.9	U
Lead-212	PB-212	pCi/L	5	U
Lead-214 (Ra-226)	PB-214	pCi/L	12	Ŭ
Radium-226 (Gamma)	13982-63-3	pCi/L	-100	U
Ruthenium-106	13967-48-1	pCi/L	10	U
U-235 (Gamma)	15117-96-1	pCi/L	-7	U

Sample Results (Form I's)

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOFKH6

LAL Sample ID: L4482-8

Date Collected: 09-MAY-95

Date Received: 11-MAY-95

Matrix:

Water

Login Number: L4482

SDG:

LK4482

Ac-228(Ra-228)	31-HAY-95	GAMMA SPEC LAL-0063_23211	9.	26.	41.	L	pCi/
Co-58	31-MAY-95	GAMMA SPEC LAL-0063_23211	2.7	5.1	8.6	u	pC1/
Co-60	31-HAY-95	GAMMA SPEC LAL-0063_23211	24.4	7.9	8.9		pCi/
Cs-137	31-MAY-95	GAMMA SPEC LAL-0063_23211	-7,2	4.0	12.	در	pCi/
Eu-152	31-MAY-95	GAMMA SPEC LAL-0063_23211	-13.	13.	49.	u	pCi/
Eu-154	31-MAY-95	GAMMA SPEC LAL-0063 23211	-3.	13.	34.	ũ	pCi/
Eu-155	31-MAY-95	GAMMA SPEC LAL-0063_23211	- 2.6	6.4	19.	u	pCi/
Fe-59	31-MAY-95	GAMMA SPEC LAL-0063_23211	1.9	8.7	19.	ند	pCi/
Pb-212	31-HAY-95	GAMMA SPEC LAL-0063_23211	5.	12.	16.	w	pCi/
%-214(Ra-226)	31-HAY-95	GAMMA SPEC LAL-0063_23211	12.	13.	18.	سن	pCi/
Ra-226(GAMMA)	31-HAY-95	GAMMA SPEC LAL-0063 23211	-100	130	190	دم	pCi/
ใน-106	31-HAY-95	GAMMA SPEC LAL-0063 23211	10.	43.	73.	سعا	pCi/
J-235(GAMMA)	31-MAY-95	GAMMA SPEC LAL-0063 23211	-7.	30.	44.	. -	pCi/
iross Alpha	12-JUN-95	GR ALP/BETA LAL-0060 23215	2.8	2.0	2.7	С	pCi/
iross Beta	12-JUN-95	GR ALP/BETA LAL-0060 23215	883.	46.	3.1		pCi/
ru-238	12-JUN-95	PU-ISOTOPIC LAL-0108 23154	-0.035	0.034	0.19	ec	pCi/
u-239/40	12-JUN-95	PU-1SOTOPIC LAL-0108_23154	0.05	0.12	0.19	m	pCi/
otal radio-strontium	09-JUN-95	SR-90 LAL-0196_23179	-0.21	0.42	0.75		pCi/
Jranium -	09-JUN-95	U TOTAL KPA LAT-0168_23131	3.31	0.17	0.20		ug/L

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOFKH6

LAL Sample ID: L4482-17

Date Collected:

09-MAY-95

Date Received: 11-MAY-95

Matrix:

Water

Login Number: L4482

Censtituent	Analyzed	Batch	Activity	Error	MDA	DateQua	Units
Tc-99	31-MAY-95	TC-99 LAL-0169_23139	1560	130	7.1	J	pCi/L

7-24-55

LOCKHEED ANALYTICAL SERVICES

RAD DATA REPORT (ra01)

Bechtel Hanford, Inc. * Richland, WA

Bechtel Hanford Project (Project BECHTEL-HANFORD)

Client Sample ID: BOFKH6

LAL Sample ID: L4482-16

Date Collected:

09-MAY-95

Date Received: 11-MAY-95

Matrix:

Water

Login Number: L4482

Constituent	Analyzed	Batch	Activi	ty Error	MDA	DataQual Units
H-3	26-MAY-95	TRITIUM(H3) LAL-0066_23181	360	220	260	pCi/L

7-24-5,

Checklist

LATA RADIOCHEMISTRY DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	Α	В	C	D	E
VALIDATION PROCEDURE:	1 1	WHC-CM-5-3, Rev.	o X	WHC-SD-EN-SPP-0	01, Rev. 1
PROJECT:	200-BP-5 ROUND 3		SDG:	LK4482-LAS	
VALIDATOR:	MC WEBB NY	LATA NO:	VB403.73		24-Jul-95
REVIEWER:	BJ MORRIS	LAB:	LAS		N/A
SAF NO:	B95-050	QAPP NO:	N/A		DOE/RL 88-32,R1
			REQUESTED		
Gamma Spec LAL-91-SOP-0063	LAL-91-SOP-0060	Gross Beta LAL-91-SOP-0060	X Pu-238 Pu-239/240	Strontium-90	Technetium-99 LAL-91-SOP-0169
X Uranium-total LAL-91-SOP-0168		· ·			
	MATRIX WATER	COMMENTS:	TIVE		YES NO N/A
	ion documentation pr		,		× 🗆 🗀
Is a case narrative p	resent?				
2. HOLDING TIMES	3				YES NO N/A
Are sample holding t	times acceptable?				
Are samples preserv	red correctly?				× 🗍
		See HOLDING TIM	E SUMMARY form		
3. INSTRUMENT P	ERFORMANCE AND	CALIBRATIONS			YES NO N/A
Were instruments/de	etectors calibrated wit	hin one year of sam	ole analysis?	4	
Are initial calibration	s acceptable?				닏닏띧
Are standards NIST					닐닏띯
Are standards accep	table?			,	
Comments:					, , ,

40373RAD.XLS, Checklist 7/25/95, 7:52 AM

LATA RADIOCHEMISTRY DATA VALIDATION CHECKLIST

4. CONTINUING CALIBRATION	YES NO N/A			
Background checked at proper frequency?				
Background check acceptable?	<u> </u>			
Efficiency checked at proper frequency?	<u> </u>			
Efficiency check acceptable?	<u> </u>			
Calibration check standards NIST traceable?	<u> </u>			
Calibration check standards acceptable?				
If NO(s) are checked, see CALIBRATION DATA SUMMARY form				
5. BLANKS	YES NO N/A			
Were method blanks analyzed?	X 🔲 🔲			
Are the method blanks free of analytes?	X			
Were method blank results acceptable?	\boxtimes \square			
Validation calculation/transcription checks were performed and are acceptable.				
If NO(s) are checked, see BLANK DATA SUMMARY form				
	YES NO N/A			
6. ACCURACY	X D			
Were spike samples analyzed at the proper frequency?				
Are all spike sample recoveries acceptable?				
Were laboratory control standards (LCS) analyzed at the proper frequency?				
Are all LCS recoveries acceptable?				
Was a tracer/chemical carrier added?				
Was the tracer/chemical carrier recovery acceptable?				
Are standard sources traceable?				
Are standards acceptable?	닏닏띋			
Validation calculation checks were performed and are acceptable.				
if NO(s) are checked, see ACCURACY DATA SUMMARY form				
7. PRECISION	YES NO N/A			
Were laboratory duplicates analyzed at the proper frequency?	lacksquare			
Are all duplicate RPD values acceptable?				
Validation calculation checks were performed and are acceptable.				
If NO(s) are checked, see PRECISION DATA SHMMARY form				

40373RAD.XLS, Checklist 7/24/95, 2:09 PM

LATA RADIOCHEMISTRY DATA VALIDATION CHECKLIST

8. FIELD QC SAMPLES Were field QC samples (field/trip blanks, duplicates, splits, Are field/trip blank results acceptable? (see Blank Data Sur Are field duplicate RPD values acceptable? (see Field QC alcu Are field split RPD values acceptable? (see Field QC calcu Are performance audit sample results acceptable? Comments: B0FKH6 is a split with B0FB90. The	mmary form) calculations) x x x x x x x x x x x x x
B0FB90 was validated in SDG W0548	-QES (VB403.71).
9. REPORTED RESULTS AND DETECTION LIMITS Are results reported for all requested analyses? Are all results supported in the raw data? Are results calculated properly? Do MDAs meet the RDLs? Validation calculation checks were performed and are access.	YES NO N/A X
Comments: The MDA >RDL for the uranium-total	analysis of sample B0FKH6. No qualification is necessary.
VALIDATI	ION SUMMARY

For deficiencies (major and minor) and comments, please refer to the Qualification Summary Table.

HOLDING TIME SUMMARY

				<u> </u>	I HAIF OOM	41111			<u> </u>	
SDG:	LK4482-LA	<i>\s</i>	VALIDATOR:	MC WEB	В			DATE:	24-Jul-95	
PROJECT: 200-BP-5 ROUND 3 REVIEWER: BJ MORRIS ·								LATA NO.:	VB403.73	
HEIS-SN	MATRIX CODE	ANALYSIS	DATE COLLECTED	PREP DATE	ANALYSIS DATE	PREP HT (days)	Required HT (days)	ANALYSIS HT (days)	Required HT (days)	VAL Q
BOFKH6	WATER	Uranium-total	9-May-95	N/A	09-Jun-95	· N/A	N/A	31	180	NONE
BOFKH6	WATER	Technetium-9	9-May-95	N/A	31-May-95	N/A	N/A	22	180	NONE
BOFKH6	WATER	Pu-238 Pu-239/240	9-May-95	N/A	12-Jun-95	N/A	N/A	34	180	NONE
BOFKH6	WATER	Strontium-90	9-May-95	N/A	09-Jun-95	N/A	N/A	31	180	NONE
BOFKH6	WATER	Tritium	9-May-95	N/A	26-May-95	N/A	N/A	17	180	NONE
BOFKH6	WATER	Gamma Scan	9-May-95	N/A	31-May-95	N/A	N/A	22	180	NONE
BOFKH6	WATER	Gross Alpha	9-May-95	N/A	12-Jun-95	N/A	N/A	34	180	NONE
воғкн6	WATER	Gross Beta	9-May-95	N/A	12-Jun-95	N/A	N/A	34	180	NONE

LATA RADIOCHEMISTRY DATA VALIDATION CHECKLIST

PRECISION DATA SUMMARY

SDG:	LK4482-LAS					DATOR:	MC W	EBB		DATE: 24-Jul-95		
PROJECT:	CT: 200-BP-5 ROUND 3				REVIEWER: BJ MORRIS					LATA NO.: VB403.73		
								DUPE	DUPE			
		ORIG	LAB	DUPE	LAB		,	RPD	CRDL	SAMPLES	VAL	
HEIS-SN	ANALYTE	RESULTS	Q	RESULTS	Q	UNITS	RDL	%	dif	AFFECTED	Q	
BOFKH6	Technetium-99	1560		2020		pCi/L	15	25.7		B0FKH6	J	
B0FKH6	Cesium-137	-7.17	U	4.79	U	pCi/L	15		4.79	NONE	NONE	

LOCKHEED ANALYTICAL SERVICES

RADIOCHEMISTRY ANALYTES

QC Data Summary For Duplicate Sample Analysis

Login Number: L4482

Analyte	Batch ID	Client ID	LAL ID	Date Analyzed	Sample Result	Error 2 Sigma	Duplicate Result	Error 2 Sigma	RER	RPD	Q
Uranium	23131	воғкн6	L4482-8	06/09/95	3.31	0.171	3.08	0.159	0.692	7.2	
Tc-99	23139	BOFBK3	L4467-6	05/31/95.	45.4	8.78	50.6	9.29	1.57	10.8	\Box
Tc-99	23139	воғкн6	L4482-17	05/31/95	1560	128	2020	163	1.57	25.7	*
Pu-238	23154	воғкн6	L4482-8	06/12/95	-0.0349 4	0.0343	-0.0527 W	0.103	0.129	40.6	
Pu-239/40	23154	BOFKH6	L4482-8	06/12/95	0.0489 (4	0.121	0.758	0.859	0.724	176	\top
Total radio	23179	воғкн6	L4482-8	06/09/95	-0.213 W	0.417	-0.1544	0.43	0.07	32.2	1
Cs-137	23211	BOFBK3	L4467-2	05/31/95	2.94	8.14	1.9	5.72	0.08	43	\vdash
Pb-214(Ra-2	23211	BOFBK3	L4467-2	05/31/95	8.79	13.7	7.97	13.8	0.03	9.79	
Cs-137	23211	BOFKH6	L4482-8	05/30/95	-7.17 u	3.96	4.79 LL	7.31	1.06	1010	*
Pb-214(Ra-2	23211	вогкн6	L4482-8	05/30/95	سا 12.3	13.2	6.32 U	13.9	0.22	64.2	
Gross Alpha	23215	BOFKH6	L4482-8	06/12/95	2.82	1.99	3.05	1.99	0.058	7.84	
Gross Beta	23215	BOFKH6	L4482-8	06/12/95	883	46.5	885	46.6	0.021	0.226	

7-24-9>

RADIOCHEMISTRY SPLIT EVALUATION

LATA ID#	VD 400 70	LIEIO.			D0550				
LATAIU#:	VB403.73	HEIS#:			B0FB9		RPD	DIF	i :
		Date: Matrix:	9-May-		9-May-95		W >20%	W >DL	4 1
	1				WATER		S >35%	S >2*DL	1 1
		t.	ORIGIN	IAL.	SPLIT	· 	1		RESULTS
Constituent	CAS#	Units	Results	Q	Results	Q			
Technetium-99	14133-76-7	pCi/L	1560		1490		4.6%		15
Tritium	10028-17-8	pCi/L	360		· 458			98	400
Gross Alpha	ALPHA	pCi/L	2.8	С	2.36		[0.44	3
Gross Beta	BETA	pCi/L	883		206		124:3%		4
Plutonium-238	13981-16-3	pCi/L	-0.035	U	-0.123	U	The second secon		
Plutonium-239/240	PU-239/240	pCi/L	0.05	U	0,246	U	1		
Strontium-90	10098-97-2	pCi/L	0.21	U	-0.15	U			
Uranium-total	7440-61-1	μg/L	3.31		2.99		10.2%		0.1
GAMMA-SCAN					-				
Actinum-228 (Ra-228)	15262-20-1	pCi/L	9	U	N/A			ļ	
Cesium-137	10045-97-3	pCi/L	-7.2	U	-7.05	U			
Cobalt-58	13981-38-9	pCi/L	2.7	U	-7.28	U	i		
Cobalt-60	10198-40-0	pCi/L	24.4		31.4			7.0	15
Europium-152	14683-23-9	pCi/L	-13	U	3.13	U		1	l
Europium-154	15585-10-1	pCi/L	-3	U	-0.807	Ū	1		f
Europium-155	14391-16-3	pCi/L	-2.6	U	8.88	u			
Iron-59	14596-12-4	pCi/L	1.9	U	-10.3	υ	•		ļ
Lead-212	PB-212	pCi/L	5	υl	N/A	i			
Lead-214 (Ra-226)	PB-214	pCi/L	12	υl	N/A	l		1	
Radium-226 (Gamma)	13982-63-3	pCi/L	-100	U	N/A	I	ļ		
Ruthenium-106	13967-48-1	pCi/L	10	Ū	18.6	υl	Ì		ŀ
U-235 (Gamma)	15117-96-1	pCi/L	-7	Ū	N/A	Ť		-	

EVALUATION:

- 1. Field duplicates are not evaluated for precision if both results are non-detect.
- 2. If both sample results are >5*DL the RPD is used for evaluation.
- 3. If either sample result is <5*DL the DIF is used for evaluation.
- 4. Shaded values in the RPD or DIF column indicate a constituent that is outside acceptance criteria.
- 5. All other positive results have exhibited acceptable precision.

Laboratory Case Narrative

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page4

CASE NARRATIVE RADIOCHEMICAL ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument calibration, initial and continuing calibration verification, quench monitoring standards, instrument background analysis, method blanks, yield tracer, laboratory control samples, matrix spike samples, duplicate samples.

Holding Time Requirements

All holding time requirements were met.

Chemical recoveries and MDAs, where applicable, can be found on the preparation and calculation worksheets of the attached raw data for each method.

Analytical Method

Gamma Spectrum Analysis

The gamma spectrum analysis was performed using LAL-91-SOP-0063. All samples were analyzed on batch #23211, which contains a method blank (MB), two duplicates (DUP1, DUP2), and a laboratory control sample (LCS). The DUP2 for Cs-137 was out of limits; however, since the Cs-137 DUP1 and both Pb-214 duplicates were within limits, the data is considered acceptable. All other QC criteria were met.

Gross Alpha Beta

The gross alpha beta analysis was performed using LAL-91-SOP-0060. All samples were analyzed on batch #23215, which contains an MB, DUP and LCS. No problems were encountered during preparation or analysis, and all QC criteria were met.

Plutonium Isotopic

The plutonium isotopic analysis was performed using LAL-91-SOP-0108. All samples were analyzed on batch #23154, which contains an MB, DUP and LCS. The duplicate (sample #23154DUP1) has a poor chemical recovery and only three counts. The duplicate uncertainty shows that the detected value is not significantly different from zero. No matrix spike analysis (MS) was performed due to insufficient sample. All other QC criteria were met.

000024

-007

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page5

Strontium-90

The strontium-90 analysis was performed using LAL-91-SOP-0196. All samples were analyzed on batch #23179, which contains an MB, DUP and LCS. During preparation, the samples were wetashed under the heat lamp with concentrated HNO3 to get rid of the excess organic materials. This was done in the original conical planchets. After they were dried, they were reweighed. There was insufficient sample for an MS analysis. All other QC criteria were met.

Technetium-99

The technetium-99 analysis was performed using LAL-91-SOP-0169. All samples were analyzed on batch #23139, which contains an MB, DUP1, DUP2, and LCS. The second duplicate (DUP2) was out of limits; however, since DUP1 was within limits, the data is considered acceptable. No matrix spike analysis was performed due to insufficient sample. All other QC criteria were met.

Total Uranium

The total uranium analysis was performed using LAL-91-SOP-0168. All samples were analyzed on batch #23131, which contains an MB, DUP, LCS and MS. No problems were encountered during preparation or analysis, and all QC criteria were met.

Tritium

The tritium analysis was performed using LAL-91-SOP-0066. All samples were analyzed on batch #23181, which contains an MB, DUP, LCS and MS. No problems were encountered during preparation or analysis, and all QC criteria were met.

Yvonne M. Jacoby Prepared By

June 20, 1995 Date 7-25-45

000025 -008

Chain-of-Custody Information

Bechtel Hanford, Inc	. 14	ПО \ ch	AIN OF CUSTO	DY/SAN	APLE A	NALYSI	S REQ	UEST				e <u>l</u> of	
	·L7	708					_				Data Turn		
Collector			Company Contact					Telephone	 -		1	☐ Priority	
Kiler	**		G.L. Kasza					(509) 372				Normal	
Project Designation			Sampling Location					SAF No.			- 1		
200-BP-5 Groundwater Round	13		200 East					B95-049					
Ice Chest No.	2 <i>(</i>		Field Logbook No.		_			Method of					
SML-	577		Offsite Property No.	(·11)	<u> </u>	 		Federal E	xpress ding/Air Bill	Ma			
Shipped To Lockheed			Offsite Property 140.	N95.0	10EQ-	- RA		Bill Of Lat	nnê.vu Dili	.‴. ∂3 c	1046A	74741	•
Possible Sample Hazards/Rem	arks			1	1	T		 	1		70.7	1 . , , , - 1	Τ.
T observe outlipre sammas received			Preservation	HNO3	Cool 4°C	Cool 4°C	Cool 4°C	NaOH	HNO3	Cool 4°C	HCI	Cool 4°C	HNO3
			Type of Container	P/G	G	P	P	P	P/G	G	P	P	P/G
	······································		No. of Container(s)	1	1	1	1	2	8		4	1	1
Special Handling and/or Stora Maintain samples between 2°C			Volume	ıL	500mL	250mL	500mL	ıL	iL	500mL	iL	20mL	II.
Maticalli Samples octaven 2	c and o c.			*1	Anions (IC)- F, Co, SO4,	Alkalinity	TDS	Cyanide	*2	Tritium	Tc-99	Activity	+3
SAI	MPLE ANALYSI	IS			NO2, NO3, PO4							Scan	
Sample No.	Matrix*	Date Sampled	Time Sampled	-	_l	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>
BOFKH6	u	5.9.95	1/02	X		入	人	X	X	1	X	1	T
BEFKH7	7	5.9.85	1100		<u> </u>						1,	- 	X
1261 11 11			1	 		 	 	 	 		 	1	1
											 		
				+		 - ·	 		 -			 	-
					- 	<u> </u>	-					 	+
					SDECIAL	I INSTRUCTI	ONE	ــــــــــــــــــــــــــــــــــــــ	<u></u>			Matrix.*	
Relinguished By CAC	Date/Time C	2900 Received By			*1 ICP Meta *2 Gross Alj Total Ura	ds - to include C pha; Gross Beta nium.	Ca, Mg, Na, K, ; Pu-238,-239/24	40; Sr-90; Gam	ıma Spec - to in	Metals - to includ clude Cs-137, Co Metals - to includ	>60, Ru-106;	S = Soi SE = Sed SO = Sol SL = Slu	limen lid dge ster
Kelinquished By	uh. Han 5-A Date/Time	Received By	Date/Tr	ime	Contractor ac	knowledges that	the 48-hour ho	ld time will not	be met.	information only.	The ERC	DS = Dru	unu Sodids unu Liquids isue
Relinquished By	Date/Time	Received By	Date/Ti	ime	The Activity	Scan is for both	sample number	s listed on this				I. – Liq V ≈ Veg X – Odi	juju getstkat
LABORATORY Receives	red By	wille	Title Sample	(43/2	lina					Date/Time	0845		
FINAL SAMPLE Disposition	sal Method			D	isposed By					Date/Time			

Ξ)
_	1
Ξ	ζ
Ξ	•
_	,
٨	3
7	٦
	_

m1.25.45	Ò		ŀ
	1	7	Ī

Cample Receiving Checkins					
Client Name: NPStingHouse - Hanford	Job No.	L448a	Cooler ID:	117	
COOLER CONDITION UPON RECEIPT					
Temperature of cooler upon receipt:					
temperature of temp. blank upon receipt:					
	Yes	No	Comments/Discrepancies		
custody seals intact	×				
chain of custody present	×		· · · · · · · · · · · · · · · · · · ·		
blue ice (or equiv.) present/frozen	X				
rad survey completed	×				
SAMPLE CONDITION UPON RECEIPT	·····				
	Yos	No	# Co		
all bottles labeled		140	* Comments/Discrepancies .		
samples intact	<u> </u>			···	•
proper container used for sample type	X				
sample volume sufficient for analysis	X				
proper pres. indicated on the COC	<u>х</u>	· · · · · · · · · · · · · · · · · · ·			
VOA's contain headspace	X	11		<u> </u>	
are samples bi-phasic (if so, indicate sample ID'S):		1/14		····	
		119			
					•
					•
MISCELLANEOUS ITEMS					
	Yes	No	* Comments/Discrepancies		
samples with short holding times	X		itrite / Nitrento		
samples to subcontract	·	11/2	· /		
ADDITIONAL COMMENTS/DISCREPANCIES					
Completed by / date: / Quil C. Janes	5-11-	55			
Sent to the client (date/initials):		** Client's	signature upon receipt:		
Notes: * = contact the appropriate CSR of any discrepancies immediately	rupou receipt			1.5°	
** = please review this information and return via facsimilic to the appre		I-\$146	8.2		•
			.2 44.4 - 4		
Ф					
,					
version 2.0 (11/11/94)					

Supplemental Information

Job No. 22192

Written Response Required: NO

CCN: N/A OU: 200-8P-5 TSD: N/A ERA: N/A

Subject Code: 1995 Round 3 Sampling

TO: W. S. Thompson

N3-06

DATE: April 21, 1995

COPIES:

D. B. Erb

H₅-01

FROM:

S. K. De Mers

Radiological Controls N3-06/376-2764

SUBJECT: 1995 Round 3 sampling for 200-BP-5

There is no need to perform total activities prior to offsite shipment to NRC licensed labs of samples taken from the attached list of wells.

The wells listed in the attachment were reviewed for radiological content based on the previous 4 years of sampling data. No well listed has a β activity in excess of 100,000 pCi/l (<.1 uCi/sample based on a 1 liter sample size) nor any α activity in excess of 10,000 pCi/l (<.01 uCi/l based on a 1 liter sample). All wells show activities < 2,000 pCi/gm (< 2 nCi/gm D.O.T. limit). The highest activity in recent samples is 17,000 pCi/l β and 170 pCi/l α .

Radiological monitoring during sampling will only be required if the wells are located in radiological areas or if the wells themselves are labeled with radiological stickers. Monitoring requirements for down hole work such as pump removal will be determined based on the history of each well on a case by case basis.

skd

END OF PACKAGE

DATA VALIDATION REPORT for 200-BP-5 GROUNDWATER ROUND 3 General Chemistry Analysis SDG LK4482-LAS LATA VB403.73

Bechtel Hanford Inc. P. O. Box 969 Richland, Washington

July 27, 1995

Table of Contents

Data Validation Narrative	000002
INTRODUCTION	000002
ANALYSES REQUESTED	000002
DATA QUALITY OBJECTIVES	
REFERENCES	000004
GLOSSARY OF VALIDATION APPLIED QUALIFIERS (CHEMISTRY)	
GLOSSARY OF LABORATORY APPLIED QUALIFIERS	
Qualification Summary Table	000007
Data Summary Table	000009
Sample Results	000011
Checklist	000013
Laboratory Case Narrative	000019
Chain-of-Custody Information	000021
END OF PACKAGE	000033

200-BP-5 Groundwater Round 3 Data Validation Narrative

INTRODUCTION

All samples in Sample Delivery Group (SDG) LK4482-LAS (VB403.73) were validated at level "C" as defined in the Data Validation Procedures for Chemical Analysis (WHC-SD-EN-SPP-002, Rev. 2).

The analyses were performed by Lockheed Analytical Services.

ANALYSES REQUESTED

See Table 1.

DATA QUALITY OBJECTIVES

Precision: Goals for precision were met.

Accuracy: Goals for accuracy were met.

Sample Result Verification: Not applicable to summary data packages that contain no raw data.

Detection Limits: Detection limit goals were met for all sample results as specified

in the Quality Assurance Program Plan for 200-BP-5 Groundwater

Operable Unit, DOE/RL 88-32, Rev. 1.

Completeness: The data package was 100% complete for all requested analyses.

MAJOR DEFICIENCIES

No major deficiencies were identified during data validation which required qualification of data as unusable.

MINOR DEFICIENCIES

No minor deficiencies were identified during data validation which required qualification of data as estimated.

000002

40374GNC.NAR; Printed: 25-Jul-95, 4:29 pm

Table 1 Chain-of-Custody Analysis Request

LATA ID #: VB403.73

SDG: LK4482-LAS

	Sample Information .									Analyses Requested			
SAMPLE	DATE			SAMPLING	FIELD QC	TEMP							
NO.	COLLECTED	MATRIX	SAF	LOCATION	INFO	°C_	1	2	3	4			
BOFKH6	9-May-95	WATER	B95-049	299-E33-12	SPLIT/B0FB90	2	Х	Х	Х	X			

Method References:

	Analysis	Method
1.	Anions (F, CI, SO ₄ , PO ₄ , NO ₂ , NO ₃)	300.0
2.	Alkalinity	310.1
3.	TDS	160.1
4.	Cyanide	CLP

REFERENCES

WHC 1993, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 2, Westinghouse Hanford Company, Richland, Washington.

DOE 1994, Quality Assurance Program Plan for 200-BP-5 Groundwater Operable Unit, DOE/RL 88-32, Rev. 1, Department of Energy-Hanford , Richland, Washington.

GLOSSARY OF VALIDATION APPLIED QUALIFIERS (CHEMISTRY)

Qualifiers which may be applied by data validators in compliance with the procedures herein are as follows.

- U- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a QC deficiency identified during data validation, the associated quantitation limit is an estimate.
- J- Indicates the compound or analyte was analyzed for and detected. The associated concentration is an estimate, but the data are usable for decision making purposes.
- BJ- Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- R- Indicates the compound or analyte was analyzed for, detected, and due to an identified QC deficiency the data are unusable.
- UR- Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data are unusable due to an identified QC deficiency.

GLOSSARY OF LABORATORY APPLIED QUALIFIERS

Qualifiers which may be applied by the laboratory in compliance with applicable requirements are as follows.

Commonly used laboratory general chemistry qualifiers:

- U- Indicates the analyte was analyzed for but not detected in the sample.
- D- Indicates a dilution was performed.

Qualification Summary Table

Qualification Summary Table

General Chemistry

ANALYTE	TYPE	QUALIFIER	SAMPLES AFFECTED	DQO	REASON
No qualifiers were a	dded by the vali	dator		. , `	

General Chemistry Field QC

			91 W. 9 11 9 11 11 11 11 11 11 11 11 11 11 11		
ANALYTE	TYPE	QUALIFIER	FIELD QC	DQO	ASSESSMENT
			SAMPLES		
All	FIELD QC	NONE	BOFKH6/BOFB90	PRECISION	Field split precision is acceptable

Comments:

1. Data qualification is not required based on field split precision, however field split results are noted here to alert the data user to uncertainties in the data set during decision making processes.

Data Summary Table

GENERAL CHEMISTRY DATA SUMMARY TABLE

LATA	HEIS #:	BOFKH	3	
		Date:	9-May-9	5
	¥	Matrix:	WATER	\
Constituent	CAS#	` Units	Results	Q
Total Dissolved Solids	TDS	mg/L	280	
Chloride by IC	16887-00-6	mg/L	8.5	
Fluoride by IC	16984-48-8	mg/L	0.33	
Nitrate-N by IC	14797-55-8	mg/L	11	
Nitrite-N by IC	14797-65-0	mg/L	0.002	U
Ortho Phosphate by IC	14265-44-2	mg/L	0.020	U
Sulfate by IC	14808-79-8	mg/L	16	
Alkalinity, total	ALKALINITY	mg/L	110	
Bicarbonate Alkalinity	188	mg/L	110	
Carbonate Alkalinity	189	mg/L	10	U
Cyanide, total	CYANIDE	mg/L	0.034	

Sample Results (Form I's)

LOCKHEED ANALYTICAL SERVICES

Sample Results

Client Sample ID: B0FKH6	Date Collected: 09-MAY-95
Matrix: Water	Date Received: 11-MAY-95
Percent Solids: N/A	

Constituent	Units	Method	Result	Project Reporting Limit	Data Qualifier(s)	Date Analyzed	LAS Batch ID	LAS Sample ID
Total Dissolved Solids	mg/L	160.1	280	40.		16-MAY-95	22839	L4482-5
Chloride	mgi/L	300.0	8.5	0.020		11-MAY-95	22732	L4482-3
Fluoride	mg/L	300.0	0.33	0.10		11-MAY-95	22737	L4482-3
Nitrate-N	mg/L	300.0	11.	0.020		11-MAY-95	22733	L4482-3
Nitrite-N	mg/L	300.0	< 0.002	0.010	U	11-MAY-95	22734	L4482-3
Ortho Phosphate	mg/L	300.0	< 0.020	0.10	υ	11-MAY-95	22736	L4482-3
Sulfate	mg/L	300.0	16.	0.10		11-MAY-95	22735	L4482-3
Alkalinity, total (as CaCO3)	mg/L	310.1	110	30.		16-MAY-95	22859	L4482-4
Bicarbonate Alka as CaCO3	mg/L	310.1	110	30.		16-MAY-95	22859	L4482-4
Carbonate Alka as CaCO3	mg/L	310.1	< 10.	30.	u	16-MAY-95	22859	L4482-4
Total Cyanide	mg/L	CLP	0.034	0.020	D(1:2)	16-MAY-95	22874	L4482-6

61> 7-19-9.
000012 026

Checklist

VALIDATION LEVEL:	1 A	В	С	D	Ė
VALIDATION PROCEDURE:		WHC-CM-5-3, Rev.	o. X	WHC-SD-EN-SPP-C	002, Rev. 2
PROJECT:	200-BP-5 ROUND	3	SDG:	LK4482-LAS	
VALIDATOR:	BJ SEYMOUR	LATA NO:	VB403.73	DATE:	19-Jul-95
REVIEWER:	BJ MORRIS HALA	LAB:	LAS	CASE:	N/A
SAF NO:	B95-049	QAPP NO:	N/A	SAP NO:	DOE/RL 88-32,R1
	·	ANALYSES	REQUESTED		,
X Anions		i i I	Cyanide CLP		
SAMPLE NO. B0FKH6	MATRIX WATER	COMMENTS:		,	
1. DATA PACKAG	E COMPLETENESS	AND CASE NARRA	TIVE		YES NO N/A
	ion documentation pr				
Is a case narrative p	present?				X \
2. HOLDING TIME	s				YES NO N/A
Are sample holding					X 🔲 🔲
		See HOLDING TIM	IE SUMMARY form		
3. INSTRUMENT P	ERFORMANCE ANI	CALIBRATIONS			YES NO N/A
Were initial calibrati	ons performed on all	instruments?			
Are initial calibration	ns acceptable?				
Were calibration che	ecks performed on all	instruments?			
Are calibration chec	-		,		片님띘
Validation calculatio	n checks were perfor	med and are accepta	able.		
<u> </u>	151101		PRATION DATA CHE	SIAADV 6	

4. BLANKS	YES NO N/A
Were laboratory blanks performed for all applicable analyses?	
Are laboratory blank results acceptable?	
Were preparation blanks analyzed?	
Are preparation blank results acceptable?	
If NO(s) are checked, see BLANK AND SAMPLE DATA SUMMARY form	,
5. ACCURACY	YES NO N/A
Were spike samples analyzed at the proper frequency?	
Are all spike sample recoveries acceptable?	
Were laboratory control samples (LCS) analyzed at the proper frequency?	
Are all LCS recoveries acceptable?	
Validation calculation checks were performed and are acceptable.	
If NO(s) are checked, see ACCURACY DATA SUMMARY form	
6. PRECISION	YES NO N/A
Were laboratory duplicates analyzed at the proper frequency?	lacksquare
Are all duplicate RPD values acceptable?	lacksquare
Were MS/MSDs analyzed?	
Are all MS/MSD RPD values acceptable?	
Validation calculation checks were performed and are acceptable.	
If NO(s) are checked, see PRECISION DATA SUMMARY form	
7. FIELD QC SAMPLES	YES NO NA
Were field QC samples (field/trip blanks, duplicates, splits, performance audit) identified?	X 🔲 🔲
Are field/trip blank results acceptable? (see Blank Data Summary form)	
Are field duplicate RPD values acceptable? (see Field QC calculations)	
Are field split RPD values acceptable? (see Field QC calculations)	
Are performance audit sample results acceptable?	
	·
Comments: B0FKH6 is a field split with B0FB90 The field split is evaluated in this package.	
The field split is evaluated in this package. B0FB90 was validated in SDG W0548-QES (VB403.71).	
DUFDAU WAS VAIIUAIEU III DUG VVUJ40-WES (VD4US. / 1).	,

40373GNC.XLS, Checklist 7/25/95, 5:09 PM

8. ANALYTE QUANTITATION	· YI	ES NO	N/A
Was analyte quantitation performed properly?			
Are results calculated properly?	. [_	4 14	Ä
Validation calculation checks were performed and are acceptable.	Ļ		¥,
Comments:			····
·			
			·
9. REPORTED RESULTS AND DETECTION LIMITS		ES NO	N/A
Are results reported for all requested analyses?	<u> </u>		Ц
Are all results supported in the raw data?	Ļ	<u> </u>	X
Do results meet the CRDLs?	[X	<u> </u>	
Validation calculation checks were performed and are acceptable.	L_		X
Comments:			
		******************	er en
VALIDATION SUMMARY			

For deficiencies (major and minor) and comments, please refer to the Qualification Summary Table.

HOLDING TIME SUMMARY

			· [· · · · · · · · · · · · · · · · · ·		,						
SDG:	LK4482-LAS VALIDATOR: BJ SEYMOUR						DATE:	19-Jul-95			
PROJECT:	2	00-BP-5 ROUND 3	REVIEWER:	BJ MORF	RIS			LATA NO.:	LATA NO.: VB403.73		
HEIS-SN	MATRIX CODE	ANALYSIS	DATE COLLECTED	PREP DATE	ANALYSIS DATE	PREP HT (days)	Required HT (days)	ANALYSIS HT (days)	Required HT (days)	VAL Q	
BOFKH6	WATER	TDS	9-May-95	N/A	16-May-95	· N/A	N/A	7	7	NONE	
воғкн6	WATER	Alkalinity	9-May-95	N/A	16-May-95	N/A	N/A_	7	14	NONE	
воғкне	WATER	Cyanide	9-May-95	N/A	16-May-95	N/A	N/A	. 7	14	NONE	
BOFKI-16	WATER	Anions (CI,F,SO ₄)	9-May-95	N/A	11-May-95	N/A	N/A	2	28	NONE	
BOFKH6	WATER	Anions (NO ₂ ,NO ₃ ,PO ₄)	9-May-95	N/A	11-May-95	N/A	N/A	2	2	NONE	

GENERAL CHEM FIELD SPLIT EVALUATION

LATA IE	#: VB403.73	HEIS#:	B0FB90		B0FKH	6	RPD	DIF	DL
	•	Date:	9-May-95	5	9-May-9	95	W >20%	W >DL	SAME
		Matrix:	WATER	-	WATE	R _	S >35%	S >2*DL	UNITS AS
			ORIGINAL	L.	SPLIT	•			RESULTS
Constituent	CAS#	Units	Results C	Q	Results	Q			
Total Dissolved Solids	TDS	mg/L	266		280		5.1%	, ,	5.0
Chloride by IC	16887-00-6	mg/L	7.89		8.5		7.4%	3	0.5
Fluoride by IC	16984-48-8	mg/L	0.10		0.33	•		0.23	0.5
Nitrate-N by IC	14797-55-8	mg/L	11.8	Ĵ.	11			0.80	2.5
Nitrite-N by IC	14797-65-0	mg/L	0.020 <i>U</i>	IR.	0.002	U			
Ortho Phosphate by IC	14265-44-2	mg/L	0.5 U	IR	0.020	U			
Sulfate by IC	14808-79-8	mg/L	16		16		1.3%		0.5
Alkalinity, total	ALKALINITY	mg/L	102		110		7.5%		10.0
Bicarbonate Alkalinity	188	mg/L	. N/A		110				
Carbonate Alkalinity	189	mg/L	N/A		10	U			
Cyanide, total	CYANIDE	mg/L	0.021 🖫	J.	0.034			0.013	0.01

EVALUATION:

- 1. Field split is not evaluated for precision if both results are non-detect.
- 2. If both sample results are >5*DL the RPD is used for evaluation.
- 3. If either sample result is <5*DL the DIF is used for evaluation.
- 4. All positive results have exhibited acceptable precision.

Laboratory Case Narrative

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page2

CASE NARRATIVE INORGANIC NON METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

 One water sample was received for LK4482 and prepared as batch 511bh and analyzed for selected analytes as requested on the chain of custody. Quality control analysis was performed on the following sample:

Client ID	LAL#		Method
воғкн6	L4482-5 L4482-3	DUP MS, DUP	160.1 TDS 300.0 Orthophosphate, Fluoride, Chloride, Nitrate-N, Nitrite-N, Sulfate
	L4482-4 L4482-6	DUP MS, DUP	310.1 Alkalinity CLP Cyanide

Holding Time Requirements

All samples were analyzed within the specified holding time.

Method Blanks

 The concentration levels of all the requested analytes in the method blank were below the reporting detection limits.

Internal Quality Control

All Internal Quality Control were within acceptance limits.

Kay McCann		May 18, 1995
Prepared By	· · · · · · · · · · · · · · · · · · ·	Date

7-24-45

005-

Chain-of-Custody Information

Bechtel Hanford, In	c. <u>L</u>	482 сн	AIN OF CUSTO	DY/SAI	MPLE A	NALYSI	S REQ	UEST			Data Turn			
Collector		-	Company Contact G.L. Kasza					Telephone (509) 372-		***,***	☐ Priority ■ Normal			
Project Designation Sampling Location 200-BP-5 Groundwater Round 3 200 East								SAF No. B95-049	7073					
Ice Chest No. Field Logbook No.			Field Logbook No.	112	9			Method of Federal Ex						
Shipped To Lockheed			Offsite Property No.)-0304	-739			ling/Air Bill	No.	10062	74344		
Possible Sample Hazards/Ren	narks		Preservation	HNO3		Cool 4°C	Cool 4°C	NaOH	HNO3	Cool 4°C	HCI	Cool 4°C	HNO3	
			Type of Container	P/G	G	P	P	P	P/G	G	P	Р	P/G	
			No. of Container(s)	1	1	1	1	2	8	t	4	1	1	
Special Handling and/or Stora Maintain samples between 2°			Volume	ıL	500mL	250mL	500mL	1L	ıL	500mL	1L·	20mL	iL	
SAI	MPLE ANALYS	is		*1	Anions (IC)- F, Co, SO4, NO2, NO3, PO4	Alkalinity	TDS	Cyanide	*2	Tritium	Tc-99	Activity Scan	*3	
Sample No.	Matrix*	Date Sampled	Time Sampled	<u> </u>	_	<u> </u>			<u> </u>	1	<u> </u>	<u>.l</u>	<u> </u>	
BOFKH6	u	5.9.95	1/02	K	_	入	人	X	X	人	X	7		
BOFKH7	V	5.9.85	1107									-	X	
				<u> </u>				<u></u>	ļ					
				 					<u> </u>			,	<u> </u>	
				<u> </u>				1	 					
CHAIN OF POSSESSION		Sign/Print				 NSTRUCTI			<u> </u>	<u> </u>		Matrix*	<u> </u>	
Relinguished By ENG	Date/Time C h.Hew 5-A	P900 Received By	Buk Her 5-9 Date/Til	ne	Total Urar *3 ICP Meta	ium. s - to include C	a, Mg, Na, K,	Fe, Ma, Si, A!,	and Bi. AA N	Actals - to include clude Cs-137, Co Actals - to include nformation only.	: Se (filtered).	S = Soi SE = Sed SO ≈ Soi SL = Sha W = Wa O ~ Oii A ~ Air DS ≈ Dru	liment id dge ter	
Relinquished By Relinquished By	Date/Time Date/Time	Received By Received By	Date/Tir		Contractor aci	mowledges that Scan is for both	the 48-hour hold	d time will not	be met. thain of custody			DL = Dru T = Tiss WI = Wir L = Lisp V = Veg X = Ouls	nn Liquids suc >c uid ctation	
LABORATORY Received	By	wills	Title Sample	C. J.	/					Date/Time	0845			

END OF PACKAGE

8633 Gage Blvd. / Kennewick, WA 99336 / Telephone (509) 783-4369 / FAX (509) 783-9661

July 27, 1995 LATA95-153

Ms. Joan Kessner Bechtel 345 Hills Richland, WA 99352

Subject: VB403.73, SDG LK4482-LAS

Dear Ms. Kessner:

Attached is the data validation report for analytical results for 200-BP-5 Groundwater Round 3, (SDG LK4482-LAS). The package was received by Los Alamos Technical Associates on July 10, 1995.

If you have any questions, please feel free to contact me.

Sincerely,

Marsh C. Web

Marsha C. Webb Deputy Project Manager

Attachment

cc: Jeanette Duncan, CH2M Hill

Don Smith, LATA

VB403.73 MCW/lb

CS

DATA VALIDATION REPORT for 200-BP-5 GROUNDWATER ROUND 3 Metals Analysis SDG LK4482-LAS LATA VB403.73

P.O. Box 969
Richland, Washington

July 27, 1995

Table of Contents

Data Validation Narrative	000002
INTRODUCTION	000002
ANALYSES REQUESTED	000002
DATA QUALITY OBJECTIVES	000002
REFERENCES	
GLOSSARY OF VALIDATION APPLIED QUALIFIERS (CHEMISTRY)	
GLOSSARY OF LABORATORY APPLIED QUALIFIERS	
Qualification Summary Table	000007
Data Summary Table	000009
Sample Results	000011
Checklist	000014
Laboratory Case Narrative	000024
Chain-of-Custody Information	000026
END OF PACKAGE	000029

200-BP-5 Groundwater Round 3 Data Validation Narrative

INTRODUCTION

All samples in Sample Delivery Group (SDG) LK4482-LAS (VB403.73) were validated at level "C" as defined in the Data Validation Procedures for Chemical Analysis (WHC-SD-EN-SPP-002, Rev. 2).

The analyses were performed by Lockheed Analytical Services.

ANALYSES REQUESTED

See Table 1.

DATA QUALITY OBJECTIVES

Precision: Goals for precision were met.

Accuracy: Goals for accuracy were met with the exception of those items

discussed in the "Qualification Summary Table".

Sample Result Verification: Not applicable to summary data packages that contain no raw data.

Detection Limits: Detection limit goals were met for all sample results as specified

in the Quality Assurance Program Plan for 200-BP-5 Groundwater

Operable Unit, DOE/RL 88-32, Rev. 1.

Completeness: The data package was 100% complete for all requested analyses:

MAJOR DEFICIENCIES

No major deficiencies were identified during data validation which required qualification of data as unusable.

MINOR DEFICIENCIES

Minor deficiencies were identified during validation which required qualification of data as estimated. See the "Qualification Summary Table".

Table 1 Chain-of-Custody Analysis Request

ATA ID #: VB403.73

SDG: LK4482-LAS

Sample Information ,									Reque	sted
SAMPLE	DATE			SAMPLING	FIELD QC	TEMP				
NO.	COLLECTED	MATRIX	SAF	LOCATION	INFO ·	°C	1	2	3	4
BOFKH6	9-May-95	WATER	B95-049	299-E33-12	Split w/ B0FB90	2	X		Х	
B0FKH7	9-May-95	WATER	B95-049	299-E33-12	Split w/ B0FB91	2		X		Χ

Method References:

	Analysis	Method
1.	ICP Metals (Ca, Mg, Na, K, Fe, Mn, Si, Al, Bi) Unfiltered	CLP .
2.	ICP Metals (Ca, Mg, Na, K, Fe, Mn, Si, Al, Bi) Filtered	CLP ·
3.	Selenium (Unfiltered)	CLP
4.	Selenium (Filtered)	CLP

REFERENCES

WHC 1993, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 2, Westinghouse Hanford Company, Richland, Washington.

DOE 1994, Quality Assurance Program Plan for 200-BP-5 Groundwater Operable Unit, DOE/RL 88-32, Rev. 1, Department of Energy-Hanford, Richland, Washington.

GLOSSARY OF VALIDATION APPLIED QUALIFIERS (CHEMISTRY)

Qualifiers which may be applied by data validators in compliance with the procedures herein are as follows.

- U- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a QC deficiency identified during data validation, the associated quantitation limit is an estimate.
- J- Indicates the compound or analyte was analyzed for and detected. The associated concentration is an estimate, but the data are usable for decision making purposes.
- BJ- Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- R- Indicates the compound or analyte was analyzed for, detected, and due to an identified QC deficiency the data are unusable.
- UR- Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data are unusable due to an identified QC deficiency.

GLOSSARY OF LABORATORY APPLIED QUALIFIERS

Qualifiers which may be applied by the laboratory in compliance with applicable requirements are as follows.

Commonly used laboratory metals (inorganic) qualifiers:

- U- Indicates the analyte was analyzed for but not detected in the sample.
- B- Indicates the analyte concentration is less than the CRDL but greater than the IDL.
- E- Indicates the value reported is estimated due to the presence of interference.
- M- Indicates duplicate injection precision criteria were not met during graphite furnace (GFAA) analysis.
- N- Indicates spiked sample recovery was not within the control limits.
- S- Indicates the reported value was determined by the Method of Standard Additions (MSA).
- W- Indicates post-digestion spike for GFAA analysis is outside control limits and the sample absorbance is less than 50% of the spike absorbance.
- *- Indicates duplicate analysis was not within control limits.
- +- Indicates the correlation coefficient (r) for the MSA was less than 0.995.

Qualification Summary Table

Qualification Summary Table

Inorganics (Metals)

ANALYTE	TYPE	QUALIFIER	SAMPLES AFFECTED	DQO	REASON
Bismuth	MINOR	BJ	BOFKH7 .		Matrix spike recovery is outside acceptance criteria.

Inorganics (Metals) Field QC

1110. 94.1100 (1110.14 40											
ANALYTE	TYPE	QUALIFIER	FIELD QC	DQO	ASSESSMENT						
			SAMPLES	<u>.</u> .'							
ALL	FIELD QC	NONE	BOFB90/BOFKH6	PRECISION	Field split precision is acceptable.						
			B0FB91/B0FKH7								

Comments:

Data qualification is not required based on field split precision, however, field split results are summarized here to alert the data user to uncertainties in the data set during decision making processes.

Data Summary Table

METALS DATA SUMMARY TABLE

LATA ID#	VB403.73	HEIS#:	BOFKH	16	B0FKH7		
		Date:	9-May-9	95	9-May-95		
		Matrix:	WATE	R	WATE	R	
Constituent	CAS#	Units	Results	Q	Results	Q	
Aluminum	7429-90-5	mg/L	0.057	U	0.057	U	
Bismuth	7440-69-9	mg/L	0.001	U	0.0014	BJ	
Calcium	7440-70-2	mg/L	34		34		
Iron	7439-89-6	mg/L	0.17		0.019	В	
Magnesium	7439-95-4	mg/L	10		10		
Manganese	7439-96-5	mg/L	0.002	U	0.002	U	
Potassium	7440-09-7	mg/L	8.8		8.2		
Selenium	7782-49-2	mg/L	0.003	U	0.003	U	
Silicon	7440-21-3	mg/L	28		26		
Sodium	7440-23-5	I *	24		23	i	

Sample Results (Form I's)

TOTAL METALS RESULTS

Client Sample ID: BOFKH6	Date Collected: 05-09-95	Matrix: water
LAL Batch ID(s): 511 bhT	Date Received: 05-11-95	

Constituents	Method	Concentration (mg/L)	IDL (mg/L)	RDL (mg/L)	Data Qualifier(s)	Date Analyzed	LAL ID
Aluminum	CLP	<0.057	0.057	0.20	U	06-20-95	L4482-2
Bismuth	CLP	<0.001	0.001	0.005	U	06-28-95	L4482-2
Calcium	CLP	34	0.056	5.0		06-20-95	L4482-2
Iron	CLP	0.17	0.010	0.10		06-20-95	L4482-2
Magnesium	CLP	10	0.057	5.0		06-20-95	L4482-2
Manganese	CLP	<0.002	0.002	0.015	υ	06-20-95	L4482-2
Potassium	CLP	8.8	0.363	5.0		06-20-95	L4482-2
Selenium	CLP	<0.003	0.003	0.005	w	06-19-95	L4482-2
Silicon	CLP	28	0.012	0.10		06-22-95	L4482-2
Sodium	CLP	24	0.041	5.0		06-20-95	L4482-2

Comments:	

BM 1-1195

DISSOLVED METALS RESULTS

Client Sample ID: BOFKH7	Date Collected: 05-09-95	Matrix: filtered water
LAL Batch ID(s): 511 bhD	 Date Received: 05-11-95	

Constituents	Method	Concentration (mg/L)	IDL (mg/L)	RDL (mg/L)	Data Qualifier(s)	Date Analyzed	ÉAL ID
Aluminum	CLP	<0.057	0.057	0.20	U	06-16-95	L4482-21
Bismuth	CLP	0.0014	0.001	0.005	_BN BJ	06-28-95	L4482-21
Calcium	CLP	34	0.056	5.0		06-16-95	L4482-21
Iron	CLP	0.019	0.010	0.10	В	06-16-95	L4482-21
Magnesium	CLP	10	0.057	5.0		06-16-95	L4482-21
Manganese	CLP	<0.002	0.002	0.015	U	06-16-95	L4482-21
Potassium	CLP	8.2	0.363	5.0		06-16-95	L4482-21
Selenium	CLP	<0.003	0.003	0.005	w	06-17-95	L4482-21
Silicon	CLP	26	0.012	0,10		06-22-95	L4482-21
Sodium	CLP	23	0.041	5.0		06-16-95	L4482-21

l"					ļ
Comments:					
ŀ					1
					1

BM 7-17-95

Checklist

VALIDATION LEVEL:	Α	В	C	D	E
VALIDATION PROCEDURE:		WHC-CM-5-3, Rev.	0 X	WHC-SD-EN-SPP-0	002, Rev. 2
PROJECT:	200-BP-5 ROUND 3		SDG:	LK4482-QES	
VALIDATOR:	BJ MORRIS	LATA NO:	VB403.73	DATE:	17-Jul-95
REVIEWER:	MC WEBB	LAB:	QES	CASE:	N/A
SAF NO:	B95-049	QAPP NO:	N/A	SAP NO:	DOE/RL 88-32,R1
		ANALYSES	REQUESTED		
X ICP Metals Unfiltered CLP	Unfiltered	X ICP Metals Filtered CLP	Filtered		
SAMPLE NO. B0FKH6	MATRIX WATER	SAMPLE NO. B0FKH7	MATRIX WATER		
	E COMPLETENESS At ion documentation propresent?		TIVE		YES NO N/A X
2. HOLDING TIMES Are sample holding					YES NO N/A
		See HOLDING TIM	E SUMMARY form		
Were initial calibration Are initial calibration Are ICP interference Were ICV and CCV Are ICV and CCV ch	e checks acceptable? checks performed on	nstruments? all instruments?	ble.		YES NO N/A X X X X X X X X X X
	If NO(s) are o	hecked, see CALIE	BRATION DATA SUN	MARY form	

40373MTL.XLS, Checklist 7/18/95, 10:36 AM

4. BLANKS	YES NO N/A
Were ICB and CCB checks performed for all applicable analyses?	
Are ICB and CCB results acceptable?	
Were preparation blanks analyzed?	
Are preparation blank results acceptable?	X 🗌 🗎
If NO(s) are checked, see BLANK AND SAMPLE DATA SUMMARY form	
5. ACCURACY	YES NO N/A
Were spike samples analyzed at the proper frequency?	× 🔲
Are all spike sample recoveries acceptable?	
Are all elements spiked at an appropriate level?	
Was a post digestion spike analyzed?	
Are all post digestion spike recoveries acceptable?	
Were laboratory control samples (LCS) analyzed at the proper frequency?	
Are all LCS recoveries acceptable?	
Validation calculation checks were performed and are acceptable.	
If NO(s) are checked, see ACCURACY DATA SUMMARY form	
6. PRECISION	YES NO N/A
Were laboratory duplicates analyzed at the proper frequency?	
Are all duplicate RPD values acceptable?	
Were MS/MSDs analyzed?	
Are all MS/MSD RPD values acceptable?	<u> </u>
Were ICP serial dilution samples analyzed at the proper frequency?	
Are all ICP serial dilution %D values acceptable?	
Validation calculation checks were performed and are acceptable.	
If NO(s) are checked, see PRECISION DATA SUMMARY form	

VALIDATION SUMMARY	
	
Comments:	
Validation calculation checks were performed and are acceptable.	
Do results meet the CRDLs?	꼭 낼 !!
Are results calculated properly?	
Are all results supported in the raw data?	
Are results reported for all requested analyses?	빌 닢 닢
9. REPORTED RESULTS AND DETECTION LIMITS	YES NO N/A
Comments:	
Validation calculation checks were performed and are acceptable.	
Are all MSA results acceptable?	
Was MSA required?	
Are all analytical spike recoveries acceptable?	
Were analytical spikes required?	
Are all duplicate injection %RSD values acceptable?	
Were duplicate injections required?	
8. FURNACE AA QUALITY CONTROL	
B0FB90 and B0FB91 were validated in SDG W0548-QES (VB403.71).	YES NO N/A
B0FKH7 is a field split with B0FB91.	
Comments: B0FKH6 is a field split with B0FB90.	
Are performance audit sample results acceptable?	
Are field split RPD values acceptable? (see Field QC evaluation)	
Are field duplicate RPD values acceptable? (see Field QC evaluation)	
Are field/trip blank results acceptable? (see Blank Data Summary form)	
Were field QC samples (field/trip blanks, duplicates, splits, performance audit) identified?	씸닢닞
7. FIELD QC SAMPLES	YES NO N/A

For deficiencies (major and minor) and comments, please refer to the Qualification Summary Table.

HOLDING TIME SUMMARY

					OUMMAIN					
SDG:	LK4482-L	AS	VALIDATOR:	BJ MORRIS				DATE:	17-Jul-95	•
PROJECT:	200	-BP-5 ROUND 3		MC WEBB	LATA NO.:	LATA NO.: VB403.73				
HEIS-SN	MATRIX CODE	ANALYSIS	DATE COLLECTED	PREP DATE	ANALYSIS DATE	PREP HT	Required HT	ANALYSIS HT	Required HT (days)	VAL Q
<u>пею-эм</u> воғкне		ANALYSIS Aluminum Calcium Iron Magnesium Manganese Potassium Sodium	9-May-95	N/A	16-Jun-95	(days) N/A	(days) N/A	(days) 38	180	NONE
BOFKH6	WATER	Bismuth	9-May-95	N/A	28-Jun-95	N/A	N/A	50	180	NONE
вогкне	WATER	Selenium	9-May-95	N/A	17-Jun-95	N/A	N/A	39	180	NONE
BOFKH6	WATER	Silicon	9-May-95	N/A	22-Jun-95	N/A	N/A	44	180	NONE
Вогкн7	WATER	Aluminum Calcium Iron Magnesium Manganese Potassium Sodium	9-May-95	N/A	20-Jun-95	N/A	N/A	42	180	NONE
BOFKH7	WATER	Bismuth	9-May-95	N/A	28-Jun-95	N/A	N/A	50	180	NONE
BOFKH7	WATER	Selenium	9-May-95	N/A	19-Jun-95	N/A	N/A	41	180	NONE
BOFKH7	WATER	Silicon	9-May-95	N/A	22-Jun-95	N/A	N/A	44	180	NONE

ACCURACY DATA SUMMARY

							•					
SDG:		LK4482-LA	s		VALIDATOR: BJ MORRIS I			DATE:	17-Jul-95	 		
PROJEC'	PROJECT: 200-BP-5 ROUND 3 RE			REVIEWE	R:	MC WEBB			LATA NO.: VB403.73			
					,		PE	RCENT RE	COVERY	(%R)		
			Lab	Actual Spiking	Minimum Required Spiking		Matrix	Matrix Spikė	Post Digestion	Laboratory Control		VAL
HEIS-SN	ANALYTE	RESULTS	1	Level		Difference	Spike	Duplicate	Spike	Standard	SAMPLES AFFECTED	Q
BOFKH6	Silicon	28.27		2.0	7.0675	-5.0675	NR		,		NONE	NONE
B0FKH7	Silicon	26.05		2.0	6.5125	-4.5125	NR				NONE	NONE
воғкн7	Bismuth	0.0014		0.20	0.00035	0.19965	27.4%				B0FKH7	BJ

NOTES:

⁽¹⁾ A negative number in the difference column indicates the spiking level for that element was not 25% of the sample concentration. The CLP method does not require qualification of sample data when this occurs.

⁽²⁾ NR = not reported

METALS QC DATA SUMMARY For Matrix Spike Sample Analysis

LAL Batch ID(s): 511 bhT

				QC:Sample Analyses							
Constituent	Client Sample ID	LAL Sample ID	Date Analyzed	Matrix Spike Result (mg/L)	Sample Result (mg/L)	Spike Added (mg/L)	(%) Recovery	Data Qualifier			
Aluminum	вогкн6	L4482-2	06-20-95	2.184	<0.057	2.0	109				
Bismuth	вогкн6	L4482-2	06-28-95	0.1810	<0.001	0.20	91				
Calcium	воғкн6	L4482-2	06-20-95	140.3	33.91	100	106				
Iron	воғкн6	L4482-2	06-20-95	1.284	0.1736	1.0	111				
Magnesium	воғкн6	L4482-2	06-20-95	65.13	10.40	50	109				
Manganese	вогкн6	L4482-2	06-20-95	0.5374	<0.002	0.50	107				
Potassium	воғкн6	L4482-2	06-20-95	63.66	8.830	50	110				
Selenium	воғкн6	L4482-2	06-19-95	0.0117	<0.003	0.010	117				
Silicon	воғкн6	L4482-2	06-22-95	29.14	28.27	2.0	a				
Sodium	воғкн6	L4482-2	06-20-95	134.6	24.49	100	110	<u> </u>			

"a" - The matrix spike recovery is not reported. The sample concentration was greater than four times the spiking level.

COMMENTS:			

Byn 17-95

000020

057_

METALS QC DATA SUMMARY For Matrix Spike Sample Analysis

LAL Batch ID(s): 511 bhD

7 100 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A Company	-	200		QC S	ample Analys	es	Mar (hyper)
Constituent	Client Sample ID	LAL Sample ID	Date Analyzed	Matrix Spike Result (mg/L)	Sample Result (mg/L)	Spike Added (mg/L)	(%) Recovery	Data Qualifier
Aluminum	ВОГКН7	L4482-21	06-16-95	1.926	<0.057	2.0	96	
Bismuth	вогкн7	L4482-21	06-28-95	0.05613	0.0014	0.20	ক্ত	N
Calcium	вогкн7	L4482-21	06-16-95	133.4	33.58	100	100	
Iron	BOFKH7	L4482-21	06-16-95	1.036	0.0186	1.0	102	·
Magnesium	вогкн7	L4482-21	06-16-95	59.90	10.10	50	100	
Manganese	вогкн7	L4482-21	06-16-95	0.5043	<0.002	0.50	101	
Potassium	вогкн7	L4482-21	06-16-95	55.56	8.164	50	95	
Selenium	вогкн7	L4482-21	06-17-95	0.0109	<0.003	0.010	109	
Silicon	воғкн7	L4482-21	06-22-95	27.29	26.05	2.0	a	
Sodium	воғкн7	L4482-21	06-16-95	117.6	22.74	100	95	

COMMENTS:		1
00:::::::::::::::::::::::::::::::::::::		i
		i
		1

Brivan

000021

METALS FIELD SPLIT EVALUATION

LATA ID#	: VB403.73	HEIS#:	B0FB90	HEIS#:	B0FKH	6	RPD	DIF	DL
		Date:	9-May-95	Date:	9-May-9	95			
		Matrix:	WATER	Matrix:	WATE	₹		μg/L	μg/L
			ORIGINAL		SPLIT	•			
Constituent	CAS#	Units	Resuits Q	Units	Results	Q			
Aluminum	7429-90-5	μg/L	23.4 U	mg/L	0.057	Ų		,	
Antimony	7440-36-0	μg/L	26.3 U	mg/L:	N/R				
Arsenic	7440-38-2		1.4 <i>BJ</i>	mg/L	N/R		·		
Barium	7440-39-3		87.4 B	mg/L	N/R				
Beryllium	7440-41-7	μg/L	0.60 U	mg/L	N/R	•			
Cadmium	7440-43-9		2.4 <i>UJ</i>	mg/L	N/R				
Calcium	7440-70-2		30400	mg/L	34		11.2%		5000
Chromium	7440-47-3		4.7 U	mg/L	N/R	,			
Cobait	7440-48-4		3.4 U	mg/L	N/R				
Copper	7440-50-8		9.8 U	mg/L	N/R				
iron	7439-89-6		128	mg/L	0.170			42	100
Lead	7439-92-1	μg/L	0.80 <i>[UJ</i>	mg/L	N/R				1
Magnesium	7439-95-4		9280 🛂	mg/L	10			720	5000
Manganese	7439-96-5		3.4 B	mg/L	0.002	U		3.4	15.0
Nickel	7440-02-0	μg/L	15.4 U	mg/L	N/R				
Potassium	7440-09-7	μg/L	6920 J	mg/L	8.8			1880	5000
Selenium	7782-49-2	μg/L	1.1 U	mg/L	0.003	U			
Silver	7440-22-4	μg/L	4.1 U	mg/L	N/R				
Sodium	7440-23-5	μg/L	21100	mg/L	24			2900	5000
Thallium	7440-28-0	μg/L	0.90 ປ	mg/L	N/R		i		1
Vanadium	7440-62-2	μg/L	18.1 B	mg/L	N/R				
Zinc	7440-66-6	μg/L	12.5 U	mg/L	N/R				
Cyanide	CYANIDE	μg/L	20.7	mg/L	N/R				
Silicon	7440-21-3	μg/L	26000	mg/L	. 28		7.4%		100
Bismuth	7440-69-9	μg/L	46.4 U	mg/L	0.001	U			

'NR' = Not Requested

EVALUATION:

- 1. Field duplicates are not evaluated for precision if both results are non-detect.
- 2. If both sample results are >5*DL the RPD is used for evaluation.
- 3. If either sample result is <5*DL the DIF is used for evaluation.
- 4. All positive results have exhibited acceptable precision.

METALS FIELD SPLIT EVALUATION

LATA ID#:	VB403.73	HEIS#:	B0FB91	HEIS#:	B0FKH7	RPD	DIF	DL
		Date:	9-May-95	Date:	9-May-95			
		Matrix:	WATER	Matrix:	WATER		μg/L	μg/Ľ
		·	ORIGINAL		SPLIT			
Constituent	CAS#	Units	Results Q	Units	Results C			
Aluminum	7429-90-5	μg/L	23.4 U	mg/L	0.057 L	J	,	
Antimony	7440-36-0	μg/L	26.3 U	mg/L·	NR			
Arsenic	7440-38-2	µg/L	1.4 <i>BJ</i>	mg/L	NR	ł	ļ	
Barium	7440-39-3	μg/L	84.0 B	mg/L	NR			
Beryllium	7440-41-7	μg/L	0.60 U	mg/L	NR			
Cadmium	7440-43-9	μg/L	2.4 <i>UJ</i>	mg/L	NR]	
Calcium	7440-70-2	μg/L	29800	mg/L	34	13.2%		5000
Chromium	7440-47-3	µg/L	4.7 U	mg/L	NR	İ		
Cobalt	7440-48-4	μg/L	3.4 U	mg/L	NR			
Copper	7440-50-8	μg/L	13.6 <i>BJ</i>	mg/L	NR			
Iron	7439-89-6	μg/L	37.9 Ü	mg/L	0.019 E	3	19.0	100
Lead	7439-92-1	μg/L	1.0 <i>BJ</i>	mg/L	NR			
Magnesium	7439-95-4	μg/L	9030	mg/L	10		970	
Manganese	7439-96-5	μg/L	3.2 B	mg/L	0.002 เ)	3.2	15.0
Nickel	7440-02-0	μg/L	15.4 U	mg/L	NR			
Potassium	7440-09-7	μg/L	7430 📆 🕽	mg/L	8.2		770	5000
Selenium	7782-49-2	μg/L	1.1 ປິ່	mg/L	0.003 נ	j		
Silver	7440-22-4	μg/L	4.1 U	mg/L	NR			
Sodium	7440-23-5	μg/L	20300 <i>J</i>	mg/L	23	1	2700	5000
Thallium	7440-28-0	μg/L	0.90 ປ	mg/L	NR]		
Vanadium	7440-62-2	μg/L	17.2 B	mg/L	NR			
Zinc	7440-66-6	μg/L	12.8 U	mg/L	NR			
Cyanide	CYANIDE	μg/L	NR	mg/L	NR			
Silicon	7440-21-3	μg/L	25400	mg/L	. 26	2.3%	I i	100
Bismuth	7440-69-9	μg/L	46.4 U	mg/L	0.0014 B	J	1.4	5

^{&#}x27;NR' = Not Requested

EVALUATION:

- 1. Field duplicates are not evaluated for precision if both results are non-detect.
- 2. If both sample results are >5*DL the RPD is used for evaluation.
- 3. If either sample result is <5*DL the DIF is used for evaluation.
- 4. All positive results have exhibited acceptable precision.

Laboratory Case Narrative

Log-in No.: L4482

Quotation No.: Q400000-B

SAF: B95-049

Document File No.: 0511596 BHI Document File No.:221

SDG No.: LK4482

Page3

CASE NARRATIVE INORGANIC METALS ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument tune (ICP/MS only), initial and continuing calibration verification, initial and continuing calibration blanks, method blank(s), laboratory control sample(s), ICP interference check samples (ICP only), serial dilutions, analytical (post-digestion) spike samples, matrix spike (predigestion) sample(s), duplicate sample(s).

Preparation and Analysis Requirements

The samples were received in on May 11, 1995. They were logged in as L4482 and prepared and analyzed in batches 511 bhT for total metals and 511 bhD for filtered water.

Holding Times-

All samples were analyzed within the method-specific holding times.

Method Blanks-

The method blanks were free of contamination.

Internal Quality Control-

All Internal Quality Control were within acceptance limits with the following exception: The matrix spike recovery for bismuth in the filtered water analysis was outside of acceptance limits (27%). The recovery based on the LCS (99%) support that the analytical system was operating within control limits.

Sample Results-

Bismuth was determined by ICP-MS, as approved by Clay Smith of Bechtel Hanford.

Shellee McGrath
Prepared By

June 29, 1995

Date

725-95

Chain-of-Custody Information

Bechtel Hanford, Inc	. 14	482 ^{сн.}	AIN OF CUSTO	DY/SAN	APLE A	NALYSI	S REQU	JEST			Pag	e <u>1</u> of _	1	
Collector Project Designation	<u> </u>	70d	Company Contact G.L. Kasza Sampling Location					Telephone (509) 372-			Data Turn	Data Turnaround ☐ Priority ■ Normal		
200-BP-5 Groundwater Round Ice Chest No.		// // 25	200 East Field Logbook No.	B95-049 Method of Shipment										
Shipped To Lockheed	37.7 ·	<u> </u>						Federal Ex Bill of Lac	epress ling/Air Bill	No.	10462	79344		
Possible Sample Hazards/Rem.	arks		Preservation	HNO3	T	Cool 4°C	Cool 4°C	NaOH	HNO3	Cool 4°C	HCI	Cool 4°C	ниоз	
			Type of Container	P/G	G	P	P	P	P/G	G	P	P	P/G	
			No. of Container(s)	1	1	1	1	2	8	i	4	1	1	
Special Handling and/or Storage Waintain samples between 2°C and 6°C. Volume					500mL	250mL	500mL	1 L	IL	500mL	IL.	20mL	ΙL	
SAMPLE ANALYSIS				*1	Anions (IC)- F, Co, SO4, NO2, NO3, PO4	Alkalinity	TDS	Cyanide	*2	Tritium	Tc-99	Activity Scan	+ 3	
Sample No.	· Matrix*	Date Sampled	Time Sampled		_	<u> </u>	<u> </u>	J.,	l				<u> </u>	
BOFKH6	u	5.9.95	1/02	K	<u> </u>	人	メ	X	X	大	入	· / \		
BOFKH7	4	5.9.85	1107		 					<u>-</u>			X	
			-					<u> </u>						
						-		<u> </u>						
					SPECIAL	INSTRUCTI	ONS	ļ	-			Matrix*		
Relinguished By ERC Date/Time 0900 Received By Date/I					*1 ICP Meta *2 Gross Ale Total Uran	is - to include (ha; Gross Beta iium.	Ca, Mg, Na, K, ; Pu-238,-239/24	o; ar-so; dam	ma spec - to m	Metals – to include clude Cs-137, Co Metals – to include	-00, Ku-100;	l	iment id : Ige ter:	
Kelinquished By Date/Time Received By Date/Ti					Contractor ac	knowledges that	the 48-hour hol	d time will not	be met.	information only.	The ERC	DS = Dn DL = Dn T = Tis WI = Wi	nn Solids nn Liquids sue pe	
Relinquished By Date/Time Received By Date/T					ine Activity	ocan is 101 90%	sample number	P TIZICOLOU (URE		Date/Time		L = Liq V = Vej X = Ou	elation	
SECTION	MAN	wills	Sample						5.	11-95	0845			
FINAL SAMPLE Dispos DISPOSITION	at Meriton	734		<u>.</u>	isposed By		 		·	Date/Timé	 	- ':	·	

Lockheed Analytical Services Sample Receiving Checklist

		1448a	Cooler ID:	47-	
COOLER CONDITION UPON RECEIPT		•			
Temperature of cooler upon receipt:					
temperature of temp. blank upon receipt:		···- ·			
	Yes	No	Comments/Discrepencies	······································	
custody seals intact	×				
chain of custody present	×			· · · · · · · · · · · · · · · · · · ·	
blue ice (or equiv.) present/frozen	χ	•			
red survey completed	×				
SALON P. CONDITION WOOM DECUME					<u></u>
SAMPLE CONDITION UPON RECEIPT				<u> </u>	
· · · · · · · · · · · · · · · · · · ·	Yes	No	Comments/Discrepancies		
all bottles labeled	<i>x</i>			<u> </u>	
samples intact	χ				
proper container used for sample type					
sample volume sufficient for analysis	<u> </u>				
proper pres. indicated on the COC	X				
VOA's contain headspace		NIA -			
are samples bi-phasic (if so, indicate sample ID'S):		119			
MISCELLANEOUS ITEMS	Vac	No.	A Comments/Discrepanies	· · · · · · · · · · · · · · · · · · ·	
MISCELLANEOUS ITEMS samples with short holding times	Yes	No	* Comments/Discrepancies		
samples with short holding times	Ycs X		* Comments/Discrepancies		
samples with short holding times		,			
samples with short holding times samples to subcontract					
samples with short holding times					
samples with short holding times samples to subcontract					
samples with short holding times samples to subcontract					
samples with short holding times samples to subcontract					
samples with short holding times samples to subcontract ADDITIONAL COMMENTS/DISCREPANCIES					
samples with short holding times samples to subcontract ADDITIONAL COMMENTS/DISCREPANCIES Completed by / date: Auto Lewer		111 B			
samples with short holding times samples to subcontract ADDITIONAL COMMENTS/DISCREPANCIES Completed by / date: Auto Sent to the client (date/initials):	X S=//-	111 B	s signature upon receipt:		
samples with short holding times samples to subcontract ADDITIONAL COMMENTS/DISCREPANCIES Completed by / date: Auto Account of the client (date/initials): Notes: " = contact the appropriate CSR of any discrepancies immediately upon	X S - //-	MIR ** Client'	s signature upon receipt:		
samples with short holding times samples to subcontract ADDITIONAL COMMENTS/DISCREPANCIES Completed by / date: Auto Sent to the client (date/initials):	X S - //-	MIR ** Client'	s signature upon receipt:		
samples with short holding times samples to subcontract ADDITIONAL COMMENTS/DISCREPANCIES Completed by / date: Out I will be completed by will be completed by w	X S - //-	MIR ** Client'	s signature upon receipt:		
samples with short holding times samples to subcontract ADDITIONAL COMMENTS/DISCREPANCIES Completed by / date: Completed by / date: Sent to the client (date/initials): Notes: " = contact the appropriate CSR of any discrepancies immediately upon a "" = please review this information and return via facsimille to the appropriate of	X S - //-	MIR ** Client'	s signature upon receipt:		

END OF PACKAGE